

Versión preliminar de los componentes

básicos de MLEDGE

MLEDGE - Aprendizaje automático en la nube y en el borde

(Cloud and Edge Machine Learning)

Diciembre de 2023

2/72

3/72

Información sobre el entregable

Nombre del documento:

Versión preliminar de los componentes básicos de MLEDGE

Versión actual: 1.0

Proyecto: MLEDGE - Aprendizaje automático en la nube y en el borde (Cloud and Edge
Machine Learning)

Paquete de trabajo: P2 - Implementación de componentes básicos de MLEDGE

Tareas: El entregable es resultado del trabajo en los diversos componentes técnicos:

- A2.1: Uso eficiente de Federated Learning (FL) en nubes híbridas y protección contra
ataques, incluidos ataques de envenenamiento e inferencia (FedSecure)

- A2.2: Protección de datos sensibles o confidenciales que sean intercambiados entre
diferentes dominios administrativos en la nube, incluido su borde que es
potencialmente menos seguro (FedWM)

- A2.3: Equidad en términos de distribución de costos y ganancias cuando la
computación en el borde se usa para entrenar de forma colaborativa modelos de
aprendizaje automático (FLaaS Manager)

- A2.4: Gestión de los desafíos de portabilidad de datos en el borde de la nube
(DataEdge)

- A2.5: DevOps y desarrollo continuo para servicios de aprendizaje automático que se
ejecutan en borde de la nube (FLaaS)

Entregable: E2.1 - M12 - Requisitos y diseño de la arquitectura y casos de uso (preliminar)

Autores: Santiago Andrés (IMDEA), Javad Dogani (IMDEA), Devriş Işler (IMDEA), Tianyue
Chu (IMDEA), Alexander Goultiaev (IMDEA), Naicheng Li (IMDEA)

Revisores: Nikolaos Laoutaris (IMDEA)

Historial de Versiones

Versión Fecha Resumen de modificaciones

Version 1.0 31-12-2023 Versión inicial del documento

4/72

Índice

Información sobre el entregable .. 3

Historial de Versiones... 3

Índice .. 4

1. Introducción .. 5

2. Arquitectura de MLEDGE ... 7

3. FLaaS ... 9

4. FedSecure .. 10

5. FedWM ... 11

6. FLaaS Manager .. 12

7. Conclusión .. 14

Anexo 1: FLTorrent progress report .. 15

Summary .. 15

Objectives ... 15

Methodologies .. 15

Decentralized Federated Learning Model .. 15

Privacy-Preserving Techniques ... 15

Bandwidth-Constrained Performance Optimization Heuristics .. 16

Evaluation ... 16

Next Steps .. 16

Conclusion .. 16

Anexo 2: Securing Federated Sensitive Topic Classification against Poisoning Attacks 18

Anexo 3: FreqyWM - Frequency Watermarking for the New Data Economy 37

Anexo 4: Understanding the price of data in commercial Data Marketplaces 53

Anexo 5: Try Before You Buy .. 65

5/72

1. Introducción
En diciembre de 2022 fue adjudicado a IMDEA Networks el proyecto “MLEDGE - Aprendizaje
automático en la nube y en el borde (Cloud and Edge Machine Learning)”
(REGAGE22e00052829516, en adelante el ‘Proyecto’ o MLEDGE) por parte del Ministerio de
Asuntos Económicos y Transformación Digital del Gobierno de España, con fondos de la
Unión Europea dentro del Plan de Recuperación, Transformación y Resiliencia (European
Union - NextGenerationEU/PRTR). El proyecto tiene como objetivo habilitar un ecosistema
próspero de servicios FL en el borde seguros y eficientes capaces de facilitar el uso de datos
personales y B2B confidenciales para entrenar modelos de ML para consumidores mientras
se protege la privacidad de los datos y de sus propietarios.

Los objetivos generales del proyecto se pueden resumir en los siguientes:

1. Hacer del aprendizaje federado una funcionalidad accesible y de fácil uso en el borde
mediante el desarrollo de una capa de software intermedio y componentes que
escondan la complejidad del procesamiento y el intercambio de datos que supone.

2. Resolver problemas técnicos asociados al aprendizaje federado en el borde de la
nube.

3. Demostrar esta funcionalidad en casos de uso que reflejen problemas reales de la
industria que pueden ser resueltos con estas tecnologías.

4. Explotar los resultados del proyecto involucrando a agentes externos y comunicar los
hallazgos al público potencial en general.

Para alcanzar estos objetivos, se han catalogado una serie de objetivos técnicos
específicos del proyecto que se resumen en los siguientes:

1. Diseñar un marco de desarrollo de servicios de aprendizaje federado (FLaaS) en el
borde de la nube y componentes que ayuden a popularizar este tipo de servicios

2. Diseñar y desarrollar soluciones de seguridad (FedSecure) contra ataques de
envenenamiento o inferencia lanzados desde servidores de borde rebeldes y/o nodos
de agregación “honestos pero curiosos”.

3. Gestionar los desafíos de la portabilidad de datos en el borde de la red (DataEdge)

4. Crear un esquema de marca de agua (FedWM) para proteger contra la redistribución
de los datos o metadatos que se intercambien entre servidores en el borde en el marco
del FLaaS.

5. Crear una capa de lógica económica y de negocio (FLaaS Manager) que implemente
una distribución justa de costes e ingresos entre las partes cuando colaboren en el
entrenamiento de modelos de ML.

6. Soporte a DevOps y al desarrollo continuo de servicios de aprendizaje automático en
la nube, optimizando los costes mediante su monitoreo, predicción y asignación
inteligente y energéticamente eficiente de los trabajos de computación.

Finalmente, es uno de los objetivos básicos del proyecto diseñar, implementar y hacer
públicos demostradores que trabajen con datos sensibles de individuos, y alimenten modelos
de aprendizaje automático en diferentes campos de la industria .A tal fin, en la primera parte
del proyecto se ha realizado una selección de empresas para el desarrollo de la plataforma
FLaaS y el monitoreo de costes de computación, así como el diseño e implementación de
casos de uso de negocio reales que se beneficien del aprendizaje distribuido en el borde de
la nube.

6/72

El presente documento se corresponde con el entregable E2.1 de título “Versión preliminar
de los componentes básicos de MLEDGE” y tiene como objetivo la presentación del avance
de los componentes básicos de MLEDGE en los que el equipo de trabajo ha estado
involucrado en el primer año del proyecto..

La estructura del documento será la siguiente. En la sección 2 resumimos la arquitectura
propuesta para el proyecto y cómo esta se alinea con los objetivos del mismo. Las siguientes
secciones, de la 3 a la 7, presentan los avances que se han alcanzado en los diferentes
componentes. Debido a que el idioma del equipo de trabajo es el inglés, estas secciones
contienen material en este lenguaje, por ejemplo, las publicaciones y los papeles de trabajo.
Finalmente, la sección 8 presenta las conclusiones y siguientes pasos en el proyecto.

7/72

2. Arquitectura de MLEDGE
En esta sección, se presenta la arquitectura del proyecto MLEDGE junto con una descripción
de los diferentes componentes de la misma. El proyecto busca:

i) Avanzar en el estado del arte de los componentes de acuerdo con los objetivos científicos

ii) Demostrar estos avances sobre plataformas y casos de uso comerciales de forma que se
facilite la explotación posterior de los resultados del proyecto en la economía real.

El diagrama mostrado en la figura siguiente resume la arquitectura de MLEDGE y los bloques
del proyecto que se presentó como propuesta del proyecto.

Figura 1. Diagrama de bloques de MLEDGE

La arquitectura de MLEDGE se articula en torno a tres capas:

● La capa de infraestructuras dispone los recursos de computación y comunicación
necesarios para la ejecución del proyecto. Dicha capa de infraestructuras puede incluir
recursos a diferentes niveles de la red, incluyendo clouds públicas o privadas
“centralizadas” en el núcleo de la nube, nodos de computación en el borde de la nube,
e incluso infraestructuras en casa o terminales de los usuarios.

● La capa de servicios MLEDGE busca integrar una serie de componentes que
habiliten servicios FLaaS en el borde de la nube, y que puedan integrar componentes
innovadores que provengan del desarrollo de los objetivos científicos del proyecto.

● La capa de demostración incluye casos de uso reales de empresas de la economía
tradicional y digital, así como un caso de uso específico de optimización de
infraestructuras cloud. Los casos de uso buscarán demostrar el uso del aprendizaje
federado en el borde de la nube y de los componentes de MLEDGE en escenarios

8/72

reales y con datos reales. Para ello, durante los primeros seis meses de proyecto se
ha realizado un screening de empresa y se han elaborado pliegos para realizar
licitaciones de estos tres casos de uso a empresas españolas externas a IMDEA.

A continuación, se describen los componentes de la capa de servicios en los que se está
trabajando durante el proyecto, su relación con los objetivos científicos, y los casos de uso
que se buscará incorporar de la industria mediante estas licitaciones.

La capa de servicios de MLEDGE trabajará sobre la base de alguna de las soluciones
comerciales de FLaaS que se describieron en la sección 4.2. Adicionalmente, se incluye una
serie de componentes perfectamente alineados con los objetivos científicos del proyecto que
buscan extender el estado del arte de algunos componentes del aprendizaje federado en el
borde de la nube. Además, su integración con casos de uso específicos de la industria
permitirá probar estos componentes directamente sobre casos reales y acelerar el tiempo
hasta la explotación de los mismos por parte de la industria.

La siguiente tabla relaciona los componentes de la capa de servicios de MLEDGE con los
objetivos científicos del proyecto:

Tabla 1. Relación entre objetivos científicos y componentes de la capa de servicios de
MLEDGE

Objetivo científico Componente
MLEDGE

1. DevOps y desarrollo continuo para servicios de aprendizaje
automático (FLaaS) que se ejecutan en borde de la nube

FLaaS

2. Uso eficiente de FL en nubes híbridas y protección contra ataques

FedSecure

3. Protección de datos sensibles o confidenciales que sean
intercambiados entre dominios administrativos en la nube y el borde de
la nube

FedWM

4. Equidad en términos de distribución de costos y ganancias cuando la
computación en el borde se usa para entrenar de forma colaborativa
modelos de ML

FLaaS Manager

5. Gestión de los desafíos de portabilidad de datos en el borde DataEdge

En las siguientes secciones se presentan los avances de cada uno de los componentes
MLEDGE, except DataEdge. Para este componente, tras el estudio del estado del arte, se
decidió que se usarían formatos estándar de representación de datos e interfaces como XML,
RDF, REST API, adaptados a las recomendaciones de DCAT, IDSA y GAIA-X para asegurar
mecanismos estándar y controlados de intercambio de datos entre las partes que intervienen
en el aprendizaje federado.

9/72

3. FLaaS
La investigación del componente de innovación de FLaaS se ha centrado en la
implementación de un sistema de aprendizaje federado distribuido sobre el protocolo
BitTorrent. El objetivo es evitar que exista una entidad centralizada que controle la información
de todos los modelos entrenados por los diferentes clientes, a la vez que se permite el
entrenamiento en paralelo de diferentes modelos propuestos por los clientes y adaptados a
sus necesidades. De forma preliminar, hemos denominado a este proyecto internamente
FLTorrent.

En el Anexo 1 se ofrece un resumen de los avances en este componente de innovación del
proyecto a fecha diciembre de 2023 (en idioma inglés). Este componente se probará sobre la
plataforma de FLaaS que incorpora al proyecto una de las empresas adjudicatarias de los
lotes de trabajo de MLEDGE, será utilizado en los casos de uso del proyecto y demostrado
al final del mismo.

10/72

4. FedSecure

Uno de los problemas de que adolece el aprendizaje federado es que es vulnerable a una
serie de ataques realizados por parte de los clientes, el servidor o entidades externas. El
módulo FedSecure tiene como objetivo trabajar para mejorar la seguridad del aprendizaje
federado en el borde de la nube. Este trabajo se realizará en dos direcciones: 1) el desarrollo
de modelos de reputación de los clientes para detectar ataques de envenenamiento, 2) la
mejora de los criterios de agregación del modelo global.

El componente FedSecure ha comenzando trabajando por este segundo componente. Como
resultado se ha publicado el siguiente artículo en NDSS, conferencia tier-1 en seguridad de
sistemas distribuidos:

T Chu, A Garcia-Recuero, C Iordanou, G Smaragdakis, N Laoutaris. Securing
Federated Sensitive Topic Classification against Poisoning Attacks. 30th Annual
Network and Distributed System Security Symposium, {NDSS} 2023

Enlace a la presentación del paper en NDSS

El paper presenta una solución basada en aprendizaje federado para construir un clasificador
distribuido capaz de detectar URLs contenido sensible, es decir, contenido relacionado con
categorías como como la salud, las creencias políticas, la orientación sexual, etc. Aunque las
limitaciones de los anteriores clasificadores offline/centralizados, sigue siendo centralizados,
sigue siendo vulnerable a los ataques de envenenamiento de maliciosos que pueden intentar
reducir la precisión de los usuarios benignos difundiendo actualizaciones defectuosas del
modelo. Para evitarlo desarrollamos un esquema de agregación robusto basado en la lógica
subjetiva y la detección de ataques basados en residuos. Empleando una combinación de de
análisis teórico, simulación basada en trazas y validación experimental validación
experimental con un prototipo y usuarios reales, demostramos que nuestro clasificador puede
detectar contenidos sensibles con gran precisión, aprender nuevas etiquetas con rapidez, y
seguir siendo robusto ante ataques de envenenamiento envenenamiento por parte de
usuarios maliciosos, así como de entradas imperfectas de usuarios no maliciosos. no
maliciosos.

El Anexo 2 del entregable incluye el paper (en inglés).

11/72

5. FedWM

El objetivo el componente es crear un esquema de marca de agua o similar para proteger de
la propiedad de los datos cuando se requiera la redistribución de los datos o metadatos que
se necesiten intercambiar entre servidores en el borde en el marco del FLaaS. Como primer
avance, se una nueva técnica para modular la frecuencia de aparición de unos pocos tokens
en un conjunto de datos para codificar una marca de agua invisible que puede utilizarse para
proteger derechos de propiedad sobre los datos. Desarrollamos algoritmos heurísticos
algoritmos heurísticos óptimos y rápidos para crear y verificar esas marcas de agua.

La técnica se presentará en una conferencia internacional Tier-1 en materia de ingeniería de
datos:

D. Isler, E. Cabana, A. Garcia-Recuero, G. Koutrika, N. Laoutaris, “FreqyWM:
Frequency Watermarking for the New Data Economy,” Aceptado para publicación en
IEEE International Conference of Data Engineering 2024.

En el artículo también demostramos la robustez de nuestra técnica contra contra varios
ataques y derivamos límites analíticos para la probabilidad de "detectar" erróneamente una
marca de agua en un conjunto de datos que no la contiene. Nuestra técnica es aplicable tanto
a datos unidimensionales a conjuntos de datos unidimensionales y multidimensionales. tipo
de token, permite un control fino de la distorsión introducida y se puede utilizar en una
variedad de casos de uso que implican la compra y en los mercados de datos actuales.

El anexo 3 del entregable incluye el paper (en inglés)

12/72

6. FLaaS Manager

De alguna manera, el aprendizaje federado asume que los diferentes nodos que participan
en el entrenamiento del modelo de aprendizaje distribuido tienen incentivo suficiente en
mejorar el modelo para participar activamente en el proceso. Esto ha sido así en los primeros
modelos de aprendizaje federado, como los empleados por el teclado de Google. Sin
embargo, según se desarrolle la tecnología y aumenten los casos de uso, puede haber
ocasiones en que la entidad que dispone los datos para entrenar los modelos no
necesariamente es la que está interesada en el desarrollo de estos modelos.

Por el contrario, los mercados de datos buscan diseñar entidades que sean capaces de
mediar entre los proveedores y los consumidores de datos sin que medie ningún interés de
los primeros en el uso que los segundos hacen de los mismos. El diseño de estos mercados
de datos distribuidos tiene una serie de desafíos técnicos, algunos de los cuales son objeto
de investigación en el proyecto. En este sentido, se está trabajando en dos frentes:

1. Facilitar el establecimiento de precios de los datos, para dinamizar y reducir la
incertidumbre en las transacciones, facilitando la toma de decisiones de precios por
parte de la parte vendedora, y proporcionando información para la toma de decisiones
de compra. En esta dirección se ha conseguido una primera publicación del primer
modelo de predicción de precios basado en información de mercado y que se presentó
en 2023 en una conferencia internacional Tier-1 en materia de ingeniería de datos en
Anaheim, California::

Santiago Andrés Azcoitia, Costas Iordanou, and Nikolaos Laoutaris. Understanding
the Price of Data in Commercial Data Marketplaces. April 2023. 39th IEEE
International Conference on Data Engineering (ICDE 2023)

Enlace a la presentación (Talk)

Enlace a las transparencias (Slides)

Enlace al conjunto de datos compartido con la comunidad (Dataset)

En la actualidad, se trabaja en la federación de este modelo de precios, de forma que
la información de oferta y transacciones resida en los proveedores y mercados de
datos, pero puedan compartir modelos en la nube para establecer los precios en base
a su conocimiento conjunto.

2. Definir una nueva plataforma de mercado de datos.

Se han propuesto nuevos mecanismos de mercado de datos (DM) para entrenar de
forma colaborativa modelos compartidos por compradores potenciales mediante
arquitecturas distribuidas que utilizan datos bajo el control de la plataforma. tivamente
modelos compartidos por compradores potenciales mediante arquitecturas
distribuidas que utilizan datos bajo el control de la plataforma. En la mayoría de los
casos, los DM exigen a los compradores que compartan información y modelos
confidenciales, lo que compromete su escalabilidad y la privacidad y propiedad
intelectual de los compradores, y cargan a la plataforma con el coste del
procesamiento para seleccionar o evaluar los datos, que no es insignificante. Además,
cargan a la plataforma con el coste del procesamiento para seleccionar o evaluar los
datos, que, según demostramos, dista mucho de ser insignificante si nos basamos en

13/72

los costes reales de las nubes públicas y los DM comerciales, lo que pone en peligro
su viabilidad.

Se ha definido una novedosa arquitectura de mercado de datos que permite a los
compradores probar datos en su modelo para seleccionar y comprar los activos que
mejor se adapten a sus necesidades, y propone cobrar a los mismos por los costes
de procesamiento relacionados con las transacciones de datos. A diferencia de
anteriores diseños, nuestra propuesta obliga a los compradores a preocuparse por la
cantidad de procesamiento solicitado a la plataforma. Mostramos técnicas para que
los compradores optimicen el coste de los procesos de selección y compra de datos,
a saber, novedosas estrategias de compra inteligente para reducir el número de
solicitudes de evaluación, y el uso de "modelos de valoración de marionetas" (puppet
valuation models o PVM) y "funciones de valoración" (valuation functions o VF) para
reducir su complejidad. Los PVM y las VF también sortean el problema de los
compradores que comparten propiedad intelectual sensible. Creemos que nuestro
mercado de datos está listo para ser implementado utilizando la funcionalidad sandbox
ya existente de entidades comerciales, y estamos trabajando en demostrar su
viabilidad utilizando casos de uso de clasificación de imágenes y predicción en base
a datos de movilidad.

En el anexo 5 presentamos el avance en este componente, que preliminarmente
denominamos Try-Before-You-Buy.

3. En un entorno de aprendizaje distribuido descentralizado. cada cliente debe
seleccionar los clientes en los que confía para entrenar su modelo y que mejor sirven
a su propósito particular. En este contexto, la valoración de los datos o de los
gradientes aportados por esos otros clientes al modelo que está entrenando cada
nodo participante es fundamental para resolver este problema. Este campo de trabajo
todavía no se ha trabajado en el proyecto y se planea hacerlo en el año entrante.

14/72

7. Conclusión
En el presente documento se ha presentado el avance de los componentes del proyecto
MLEDGE y una primera versión preliminar de los mismos. Uno de los grandes objetivos del
proyecto y del PRTR es la explotación de los avances científicos generados por parte de la
industria. En este sentido, se ha introducido el contenido de tres casos de uso que han sido
objeto de sendas licitaciones en el marco del proyecto para contratar agentes de la industria
que se encarguen de demostrar la viabilidad del aprendizaje federado en el borde de la nube,
y que sirvan a la vez como prueba de concepto para los diferentes componentes científicos
que se desarrollen durante el proyecto.

Los siguientes pasos en el proyecto son fundamentalmente tres:

● Incorporar al proyecto a las empresas que se encarguen de elaborar los casos de uso
del proyecto

● Continuar con el trabajo de investigación y desarrollo de los componentes
● Estudiar la integración de estos componentes técnicos de MLEDGE con la plataforma

FLaaS que se emplee y en los casos de uso en que puedan ser útiles.

Durante este proceso y según se disponga de mayor visibilidad respecto a los planes de las
diferentes empresas adjudicatarias, se utilizará la información del presente entregable para
alinearla con los planes de las empresas adjudicatarias. Esto con el objetivo de incorporar
más detalles sobre los casos de uso, sus requisitos y el diseño de la plataforma sobre la que
se desarrollarán estos en los documentos de análisis de requisitos y diseño de los casos de
uso. Así mismo, se informará en estos entregables sobre qué módulos se van a probar en
cada caso de uso y con qué demostradores prácticos se probará su funcionamiento.

15/72

Anexo 1: FLTorrent progress report

Summary
The FLTorrent project has made substantial progress in the realm of decentralized federated
learning, emphasizing a delicate balance between security, performance, and bandwidth
optimization. Decentralized Federated Learning (FL) is a variant of FL, where the central
server is eliminated and clients can send local gradients to others by peer-to-peer
communication. Despite their pioneering contributions to decentralized FL, most of these
works focus on improving the convergence speed of the model. Decentralized FL still has
privacy issues that cannot be ignored since the clients can investigate their neighbors’
gradients directly. FLTorrent, with its foundation in BitTorrent, introduces a novel dimension
to the distributed learning architecture. By leveraging the inherent efficiency and scalability of
BitTorrent's peer-to-peer communication model, FLTorrent enhances its ability to distribute
and synchronize model updates across a decentralized network of peers. This not only fosters
collaboration but also facilitates the seamless exchange of information, contributing to the
democratization of machine learning processes.

This report encapsulates the detailed efforts to design, implement, and evaluate the FLTorrent
system with a particular focus on optimizing loss while adhering to constraints on upload and
download links' bandwidth. Notably, our efforts also include incorporating insights from
FLtorrent, a groundbreaking approach that leverages BitTorrent for the efficient
communication of model chunks.

Objectives

The overarching objectives of the FLTorrent project have been intricately crafted to address
the multifaceted challenges associated with decentralized federated learning:

● Decentralized FL Model Development: Develop a collaborative and secure
decentralized federated learning model.

● Privacy-Preserving Techniques: Implement advanced techniques to ensure privacy,
focusing on anonymizing data chunks during the learning process.

● Bandwidth-Constrained Performance Optimization: Optimize model loss while
considering constraints on upload and download links' bandwidth.

Methodologies

Decentralized Federated Learning Model

The FLTorrent decentralized FL model utilizes a collaborative learning approach, distributing
the training process across a network of peers. This ensures a robust model while promoting
privacy, security, and efficient bandwidth utilization.

Privacy-Preserving Techniques

Our commitment to privacy is underscored by the implementation of multiple advanced
techniques, including the anonymization of data chunks. By employing a combination of
privacy-preserving methods, the FLTorrent system fortifies itself against potential security

16/72

threats and breaches. This approach not only safeguards sensitive information during data
exchange but also ensures the integrity of the decentralized federated learning process.

Bandwidth-Constrained Performance Optimization Heuristics

In the pursuit of optimal performance, FLTorrent incorporates performance optimization
heuristics that explicitly consider constraints on upload and download links' bandwidth. This
strategic approach minimizes loss while ensuring efficient bandwidth utilization. The system
employs adaptive chunk distribution heuristics, considering constraints on upload and
download links' bandwidth. This approach optimizes the learning process by adapting to the
unique bandwidth capabilities of individual peers, minimizing loss, and enhancing overall
performance. Importantly, we draw inspiration from FLTorrent, a paradigm that utilizes
BitTorrent for the efficient communication of model chunks across distributed peers.

Evaluation

The current phase of the FLTorrent project revolves around a meticulous evaluation process,
focusing on:

1. Security Evaluation: Ensuring the effectiveness of privacy-preserving techniques
against potential privacy breaches and attacks.

2. Bandwidth-Constrained Performance Evaluation: Assessing the impact of
performance optimization heuristics with a focus on minimizing loss while adhering to
constraints on upload and download links' bandwidth.

Next Steps

As the project transitions into the evaluation phase, the following key steps will be undertaken:

Thorough Analysis and Validation: Conduct a detailed analysis of results obtained from
real-world FL projects, with a specific emphasis on bandwidth-constrained performance.

Stakeholder Feedback and Refinement: Engage with stakeholders to gather feedback,
facilitating iterative refinement of the FLTorrent model with a focus on bandwidth optimization.

Parameter Fine-Tuning: Fine-tune privacy and performance parameters based on evaluation
findings, ensuring the effective optimization of loss within bandwidth constraints.

Conclusion

The FLTorrent project stands at the forefront of decentralized federated learning, emphasizing
not only security and privacy but also performance optimization within the constraints of upload
and download links' bandwidth. It extends beyond conventional methodologies, offering a
solution that is not only secure and privacy-conscious but also highly performant in bandwidth
utilization. The integration of privacy-preserving techniques, which encompass a sophisticated
blend of multiple advanced methods, ensures that sensitive information remains confidential
during the decentralized learning process. Moreover, FLTorrent 's commitment to performance
optimization is underscored by the deployment of bandwidth-constrained heuristics. These
heuristics, inspired by the dynamic distribution principles of FLTorrent, adaptively allocate
model chunks based on the bandwidth constraints of individual peers. This approach not only

17/72

minimizes loss in the learning process but also optimizes the use of available bandwidth
resources, contributing to the overall efficiency of the federated learning model.

Drawing inspiration from Bit Torrent network and incorporating its principles, it emerges not
just as a solution but as a transformative force in the realm of decentralized federated learning.
This amalgamation of cutting-edge technologies, privacy-preserving methodologies, and
innovative bandwidth utilization strategies positions FLTorrent as a beacon of innovation and
a pioneering solution in achieving the delicate equilibrium between security, performance, and
efficient bandwidth utilization in the ever-evolving landscape of machine learning. The
successful integration of privacy-preserving techniques and bandwidth-constrained
performance optimization heuristics positions FLTorrent as a pioneering solution in achieving
a delicate equilibrium between security, performance, and efficient bandwidth utilization.

18/72

Anexo 2: Securing Federated Sensitive Topic
Classification against Poisoning Attacks

Securing Federated Sensitive Topic Classification
against Poisoning Attacks

Tianyue Chu
IMDEA Networks Institute

Universidad Carlos III de Madrid

Alvaro Garcia-Recuero
IMDEA Networks Institute

Costas Iordanou
Cyprus University of Technology

Georgios Smaragdakis
TU Delft

Nikolaos Laoutaris
IMDEA Networks Institute

Abstract—We present a Federated Learning (FL) based solu-
tion for building a distributed classifier capable of detecting URLs
containing sensitive content, i.e., content related to categories such
as health, political beliefs, sexual orientation, etc. Although such
a classifier addresses the limitations of previous offline/centralised
classifiers, it is still vulnerable to poisoning attacks from malicious
users that may attempt to reduce the accuracy for benign users
by disseminating faulty model updates. To guard against this, we
develop a robust aggregation scheme based on subjective logic
and residual-based attack detection. Employing a combination of
theoretical analysis, trace-driven simulation, as well as experi-
mental validation with a prototype and real users, we show that
our classifier can detect sensitive content with high accuracy,
learn new labels fast, and remain robust in view of poisoning
attacks from malicious users, as well as imperfect input from
non-malicious ones.

I. INTRODUCTION

Most people are not aware that tracking services are present
even on sensitive web domains. Being tracked on a cancer
discussion forum, a dating site, or a news site with non-
mainstream political affinity can be considered an “elephant
in the room” when it comes to the anxieties that many
people have about their online privacy. The General Data
Protection Regulation (GDPR) [33] puts specific restrictions
on the collection and processing of sensitive personal data
“revealing racial or ethnic origin, political opinions, religious
or philosophical beliefs, or trade union membership, also
genetic data, biometric data for the purpose of uniquely
identifying a natural person, data concerning health or data
concerning a natural persons sex life or sexual orientation”.
So do other public bodies around the world, e.g. in California
(California Consumer Privacy Act (CCPA) [34]), Canada [35],
Israel [36], Japan [37], and Australia [38].

In a recent paper, Matic et al. [4] showed how to train a
classifier for detecting whether the content of a URL relates to
any of the above-mentioned sensitive categories. The classifier
was trained using 156 thousand sensitive URLs obtained from
the Curlie [32] crowdsourced web taxonomy project. Despite

the demonstrated high accuracy, this method has limitations
that stem from being centralised and tied to a fixed training
set. The first limitation means that the method cannot be used
“as is” to drive a privacy-preserving distributed classification
system. The second limitation implies that it is not straight-
forward to cover new labels related to yet unseen sensitive
content. For example, in their work the Health category could
be classified with accuracy greater than 90%. However, the
training labels obtained from Curlie in 2020 did not include
any labels related to the COVID-19 pandemic. Therefore, as
will be shown later, this classifier classifies COVID-19 related
sites with only 53.13% accuracy.

Federated Learning (FL) [5], [13] offers a natural solution
to the above two mentioned limitations, namely, centralized
training and training for a fixed training set. FL allows
different clients to train their classification models locally
without revealing new or existing sensitive URLs that they
label, while collaborating by sharing model updates that can
be combined to build a superior global classification model.
FL has proved its value in a slew of real-world applications,
ranging from mobile computing [46]–[48] to health and med-
ical applications [49]–[51]. However, due to its very nature,
FL is vulnerable to so-called poisoning attacks [12], [26]
mounted by malicious clients that may intentionally train their
local models with faulty labels or backdoor patterns, and then
disseminate the resulting updates with the intention of reducing
the classification accuracy for other benign clients. State-of-
the-art approaches for defending against such attacks depend
on robust aggregation [8], [15], [16], [20], [27], [60] which,
as we will demonstrate later, are slow to converge, thereby
making them impractical for the sensitive-content classification
problem that we tackle in this paper.

Our Contributions: In this paper, we employ FL for sensitive
content classification. We show how to develop a robust FL
method for classifying arbitrary URLs that may contain GDPR
sensitive content. Such a FL-based solution allows building a
distributed classifier that can be offered to end-users in the
form of a web browser extension in order to: (i) warn them
before and while they navigate into such websites, especially
when they are populated with trackers, and (ii) allow them
to contribute new labels, e.g., health-related websites about
COVID-19, and thus keeping the classifier always up-to-date.
To the best of our knowledge this method represents the first
use of FL for such task.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23112
www.ndss-symposium.org

Our second major contribution is the development of a
reputation score for protecting our FL-based solution from
poisoning attacks [12], [26]. Our approach is based on a
novel combination of subjective logic [3] with residual-based
attack detection. Our third contribution is the development
of an extensive theoretical and experimental performance
evaluation framework for studying the accuracy, convergence,
and resilience to attacks of our proposed mechanism. Our
final contribution is the implementation of our methods in a
prototype system called EITR (standing for “Elephant In the
Room” of privacy) and our preliminary experimental validation
with real users tasked to provide fresh labels for the accurate
classification of COVID-19 related URLs.

Our findings: Using a combination of theoretical analysis,
simulation, and experimentation with real users, we:

• Demonstrate experimentally that our FL-based classifier
achieves comparable accuracy with the centralised one pre-
sented in [4].
• Prove analytically that under data poisoning attacks, our
reputation-based robust aggregation built around subjective
logic, converges to a near-optimal solution of the corre-
sponding Byzantine fault tolerance problem under standard
assumptions. The resulting performance gap is determined by
the percentage of malicious users.
• Evaluate experimentally our solution against state-of-the-
art algorithms such as Federated Averaging [5], Coordinate-
wise median [20], Trimmed-mean [20], FoolsGold [8], [15],
Residual-based re-weighting [16] and FLTrust [60], and show
that our algorithm is robust under Byzantine attacks by using
different real-world datasets. We demonstrate that our solution
outperforms these popular solutions in terms of convergence
speed by a factor ranging from 1.6× to 2.4× while achieving
the same or better accuracy. Furthermore, our method yields
the most consistent and lowest Attack Success Rate (ASR),
with at least 72.3% average improvement against all other
methods.
• Validate using our EITR browser extension that our FL-
based solution can quickly learn to classify health-related sites
about COVID-19, even in view of noisy/inconsistent input
provided by real users.

The remainder of the article is structured as follows:
Section II introduces the background for our topic. Section III
presents our reputations scheme for FL-based sensitive content
classification, as well as its theoretical analysis and guarantees.
Section IV covers our extensive performance evaluation against
the state-of-the-art and Section V some preliminary results
from our EITR browser extension. Section VI concludes the
paper and points to on-going and future work including the
generalization of our method to other topics.

II. BACKGROUND

A. A Centralised Offline Classifier for Sensitive Content

Matic et al. [4] have shown how to develop a text classifier
able to detect URLs that contain sensitive content. This clas-
sifier is centralised and was developed in order to conduct
a one-off offline study aimed at estimating the percentage
of the web that includes such content. Despite achieving an
accuracy of at least 88%, utilising a high-quality training set
meticulously collected by filtering the Curlie web-taxonomy

project [32], this classifier cannot be used “as is” to protect real
users visiting sensitive URLs populated by tracking services.

B. Challenges in Developing a Practical Classifier for Users

From offline to online: The classifier in [4] was trained using
a dataset of 156 thousand sensitive URLs. Despite being the
largest dataset of its type in recent literature, this dataset is
static and thus represents sensitive topics up to the time of its
collection. This does not mean, of course, that a new classifier
trained with this data would never be able to accurately classify
new URLs pertaining to those sensitive categories. This owes
to the fact that categories such as Health, involve content
and terms that do not change radically with time. Of course,
new types of sensitive content may appear that, for whatever
reason, may not be so accurately classified using features
extracted from past content of the same sensitive category.
Content pertaining to the recent COVID-19 pandemic is such
an example. Although the Health category had 74,764 URLs
in the training set of [4] which lead to a classification accuracy
of 88% for Health, as we will see later in Figure 14 middle
of Section V-C, the classifier of [4] classifies accurately as
Health only 53.13% of the COVID-19 URLs with which we
tested it. This should not come as a surprise since the dataset
of [4] corresponds to content generated before the first months
of 2020, during which COVID-19 was not yet a popular topic.
Therefore, we need to find a way to update an existing classifier
so that it remains accurate as new sensitive content appears.

From centralised to distributed: A natural way to keep a
classifier up-to-date is to ask end-users to label new sensitive
URLs as they encounter them. End-users can report back to
a centralised server such URLs which can then be used to
retrain the classification model. This, however, entails obvious
privacy challenges of “Catch-22” nature, since to protect users
by warning them about the presence of trackers on sensitive
URLs, they would first be required to report to a potentially
untrusted centralised server that they visit such URLs. Even
by employing some methods for data scarcity, e.g., semi-
supervised learning, the manual labelling from users remains
sensitive and may be harmed by the untrusted server. Federated
Learning, as already mentioned, is a promising solution for
avoiding the above Catch22 by conducting a distributed, albeit,
privacy-preserving, model training. In an FL approach to our
problem, users would label new URLs locally, e.g., a COVID-
19 URL as Health, retrain the classifier model locally, and
then send model updates, not labelled data, to a centralised
server that collects such updates from all users, compiles and
redistributes the new version of the model back to them. In
Section III we show how to develop a distributed version of the
sensitive topic classifier of [4] using FL. The trade-off of using
FL, is that the distributed learning group becomes vulnerable
to attacks, such as “label-flipping” poisoning attacks discussed
in Section IV. This paper develops a reputation scheme for
mitigating such attacks. Other types of attacks and measures
for preserving the privacy of users that participate in a FL-
based classification system for sensitive content are discussed
in Section VI.

C. Related Work

Privacy preserving crowdsourcing: Similar challenges to the
ones discussed in the previous paragraph have been faced in

2

services like the Price $heriff [54] and eyeWnder [55] that
have used crowdsourcing to detect online price discrimina-
tion and targeted advertising, respectively. Secure Multi-Party
Computation (SMPC) techniques such as private k-means [56]
are used to allow end-users to send data in a centralised server
in a privacy-preserving manner. The centralised computation
performed by Price $heriff and eyeWnder is not of ML nature,
thus leaving data anonymisation as the main challenge, for
which SMPC is a good fit. Classifying content as sensitive or
not is a more complex ML-based algorithm for which FL is a
more natural solution than SMPC.
General works on FL: FL [5], [13] is a compelling technique
for training large-scale distributed machine learning models
while maintaining security and privacy. The motivation for FL
is that local training data is always kept by the clients and the
server has no access to the data. Due to this benefit that alle-
viates privacy concerns, several corporations have utilised FL
in real world services. In mobile devices, FL is used to predict
keyboard input [46], human mobility [47] and behaviour for
the Internet of Things [48]. FL is also applied in healthcare to
predict diseases [49], [50], detect patient similarity [51] while
overcoming any privacy constrains. For the classification, FL
is not only implemented for image classification [52] but also
text classification [53].
Resilience to poisoning attacks: Owing to its nature [12],
[26], FL is vulnerable to poisoning attacks, such as label
flipping [16] and backdoor attacks [12]. Therefore, several
defence methods have been developed [8], [15], [16], [20].
While these state-of-the-art approaches perform excellently in
some scenarios, they are not without limitations. First, they
are unsuitable for our sensitive content classification, which
necessitates that a classifier responds very fast to “fresh”
sensitive information appearing on the Internet. In existing
methods, the primary objective is to achieve a high classi-
fication accuracy. This is achieved via statistical analysis of
client-supplied model updates and discarding of questionable
outliers before the aggregation stage. However, since the server
distrusts everyone by default, even if an honest client discovers
some fresh sensitive labels, its corresponding updates may be
discarded or assigned low weights, up until more clients start
discovering these labels. This leads to a slower learning rate
for new labels.

Second, recent studies [12], [26] have shown that existing
Byzantine-robust FL methods are still vulnerable to local
model poisoning since they are forgetful by not tracking in-
formation from previous aggregation rounds. Thus, an attacker
can efficiently mount an attack by spreading it across time [31].
For example, [22] recently showed that even after infinite
training epochs, any aggregation which is neglectful of the
past cannot converge to an efficient solution.

The preceding studies demonstrate the importance of incor-
porating clients’ previous long-term performance in evaluating
their trustworthiness. Few recent studies have considered this
approach [22], [60]. In [22], the authors propose leveraging
historical information for optimisation, but not for assessing
trustworthiness. In [60], a trust score is assigned to each client
model update according to the cosine similarity between the
client’s and server’s model updates, which is trained on the
server’s root dataset (details in Section IV-A3). However, it
is impractical for a server to obtain additional data, such
as a root dataset, in order to train a server-side model. In

TABLE I: Notation
Abbreviation Description
M the total number of clients
N the number of parameters of global model
Q the number of samples of each client
T the total number of iterations
wt

i,n the n-th parameter from client i in t iteration
xt
i,n the ranking of wt

i,n in wt
n

An, Bn the slope and intercept of repeated median linear regression
eti,n the normalised residual of the n-th parameter from client i in t iteration

addition, because the server collects root data only once and
does not update it throughout the training process, when new
types of content emerge over time, the root data may become
stale thereby harming the classifier’s performance. Other recent
studies employ spectral analysis [63], differential privacy [65],
and deep model inspection [66] to guard against poisoning
attacks, but, again, they do not use historical information to
assess the reliability of clients. To measure client trustworthi-
ness without collecting additional data at the server, in the next
sections we show how to design a robust aggregation method
to generate reputation automatically based on the historical
behaviours of clients, which is a more realistic approach for a
real FL-based decentralised system implemented as a browser
extension for clients.

III. A ROBUST FL METHOD FOR CLASSIFYING
SENSITIVE CONTENT ON THE WEB

In this section, we first show how to build an FL-based
classifier for sensitive content. Then we design a reputation
score for protecting against poisoning attacks. We analyse
theoretically the combined FL/reputation-based solution and
establish convergence and accuracy guarantees under common
operating assumptions.

A. FL Framework for Classifying Sensitive Content

Table I presents the notation that we use in the remainder of
the paper. In FL, clients provide the server updated parameters
from their local model, which the server aggregates to build
the global model M .

Suppose we have M clients participating in our classi-
fication training task and the dataset D =

⋃M
i=1Di, where

Di ∼ Xi(µi, σ
2
i) denotes the local data of client i from non-

independent and non-identically (Non-IID) distribution Xi with
the mean µi and standard deviation σi. In our task, the clients’
data is the textual content of URLs stripped of HTML tags. The
objective function of FL, L : Rd → R which is the negative
log likelihood loss in our task, can be described as

L(w) = ED∼X [l(w;D)]
where l(w;D) is the cost function of parameter w ∈ W ⊆ Rd.
Here we assumeW is a compact convex domain with diameter
d. Therefore, the task becomes

w∗ = argmin
w∈W

L(w)

To find the optimal w∗, we employ Stochastic Gradient De-
scent (SGD) to optimise the objective function.

During the broadcast phase, the server broadcasts the
classification task and training instructions to clients. Then,
the clients apply the following standard pre-processing steps

3

10 20 30 40 50 60 70 80 90 100
0%

20%

40%

60%

80%

100%

Number of Clients

A
cc

u
ra

c
y

1

Avg-ACC (Central)

Health (Central)

Religion (Central)

 Avg-ACC (FedAvg)

 Health (FedAvg)

 Religion (FedAvg)

Fig. 1: Accuracy of FL classifiers and centralised classifiers in
Health, Religion and all category.

on the webpage content, that is, transformation of all let-
ters in lowercase and the removal of stop words. Next, the
clients extract the top one thousand features utilising the
Term Frequency-Inverse Document Frequency (TF-IDF) [58]
as in [4]. At iteration t, the client i receives the current global
model Mglobal and then following the training instructions
from server, trains the local model on its training data Di and
optimises wt

i = argminw Li(w
t
i) by using SGD:

wt
i ← wt−1

i − r
∂Li(w

t−1
i)

∂w

where Li(w) := EDi∼X [l(w;Di)] =
1
Qi

∑Qi

j=1 l(w;D
j
i), D

j
i

and Qi means the j-th sample and the number of samples of
the client i respectively, and r is the learning rate.

In every iteration, after finishing the training process the
clients send back their local updates to the server. Then, the
server computes a new global model update by combining
the local model updates via an aggregation method AGG as
follows:

wt = AGG
({

wt
i

}M
i=1

)
Here we utilise the basic aggregation method (FedAvg) [5],
which uses the fraction of each client’s training sample size in
total training samples as the average weights:

wt =

M∑
i=1

Qi

Q
wt

i

We introduce other robust aggregation methods in the next
subsection. Subsequently, the server uses the global model
update to renew the global model Mglobal.

Using the above FL-based framework we first evaluate how
the number of users in the system affects the average accuracy
of the classifier. The results for the sensitive categories, Health
and Religion, as well as the overall average accuracy (Avg-
ACC) are depicted in Figure 1. A first observation is that
when a fixed size dataset is divided into multiple segments
and distributed to more clients, the model’s accuracy decreases
since each client has less data for training. Compared to the
centralised classifier, using the same data, the accuracy of the
FL classifier is slightly lower, which is expected when the
training is distributed to a larger number of clients. Overall,
we observe that the average accuracy difference between the
FL and the centralised classifier is 5.76%, and this remains
steady as the number of clients grows. In addition, Looking
at the different sensitive categories (Health and Religion), we
see the FL-based classifier achieves an accuracy very close to

Fig. 2: Overview of reputation-based aggregation algorithm.

the corresponding one of the centralised classifier for these
categories (on average 0.8533 vs. 0.88 and 0.9366 vs. 0.94,
respectively).

B. A Reputation score for Thwarting Poisoning Attacks

Figure 2 shows an overview of our reputation-based ag-
gregation algorithm consisting of three components: the attack
detection scheme, the reputation model, and the aggregation
module. The attack detection scheme re-scales and rectifies
damaging updates received from clients. Then, the reputation
model calculates each client’s reputation based on their past
detection results. Finally, the aggregation module computes the
global model by averaging the updates of the clients using their
reputation scores as weights. We detail each component in the
following subsections.

1) Attack Detection Scheme: Our attack detection scheme
aims to reduce the impact of suspicious updates by identifying
them and applying a rescaling algorithm. At every iteration,
when model updates from clients arrive at the server, we apply
Algorithm 1 there to rescale the range of values for those
parameters in the updates.

This restriction on the value range aims not only to min-
imise the impact of abnormal updates from attackers but also to
limit the slope for the repeat median regression. Considering
the n-th parameter in round t from all the participants, we
calculate the standard deviation σ(wt

i,n) of this series. Then
we sort them in ascending order and determine the range
by subtracting the lowest value from the highest one. If the
result is above the threshold ϖ, we rescale the highest and
lowest value by deducting and adding its standard deviation
respectively to further bound their range.

Then, a robust regression [14] is carried out to identify
outliers among the updates in the current round. Outlier detec-
tion is a well-established topic in statistics. Robust regression
methods often handle outliers by using the median estimators.
Median-based aggregation methods have a rich and longstand-
ing history in the area of robust statistics [21]. However, the
methods developed by the traditional robust statistics can only
withstand a small fraction of Byzantine clients, resulting in
a low “breakdown point” [59]. Different from many other
variations of the univariate median, the repeated median [14]

4

Algorithm 1: Rescale(w)

Input :
{
wt

i,n

}
← Local Model parameters in

round t
Output:

{
wt

i,n

}
with range of value less than ϖ

1 for n← 1 to N do
2 // Determine the maximum range

3 Rm = maxwt
i,n−minwt

i,n = w
t,(Max)
i,n −wt,(Min)

i,n

4 while Rm > ϖ do
5 // Rescale range based on standard

deviation.

6 w
t,(Max)
i,n := w

t,(Max)
i,n − σ(wt

i,n);
7 w

t,(Min)
i,n := w

t,(Min)
i,n + σ(wt

i,n);
8 // Updated Rm.
9 Rm = maxwt

i,n −minwt
i,n =

w
t,(Max)
i,n − w

t,(Min)
i,n

10 end while
11 end for

is impervious to atypical points even when their percentage is
nearly 50%. The repeated median is defined as a modified U-
statistic and the concept behind it is to utilise a succession
of partial medians for computing approximation τ̂ of the
parameter τ : For k ∈ N, the value of parameter τ(z1, · · · , zk)
is determines by subset of k data points z1, · · · , zk.

τ̂ = median
z1

{
median
z2 /∈{z1}

{
median

zk /∈{z1,··· ,zk−1}
τ(z1, · · · , zk)

}}
(1)

In our case, the intercept Â and slop B̂ are estimated by
repeated median as bellow:

B̂n = median
i

{
median

i ̸=j
{Bn(i, j)}

}
(2)

Ân = median
i

{
wi,n − B̂nxi,n

}
(3)

where Bn(i, j) =
wj,n−wi,n

xj,n−xi,n
, xi,n represents the index of wi,n

in wn which is sorted in ascending order.

Next, we employ the IRLS scheme [10] to generate each
parameter’s confidence score sti,n based on the normalised
residual from repeated median regression, which is also utilised
in a residual-based aggregation method [16]:

sti,n =

√
1− diag(Ht

n)

eti,n
Ψ

(
eti,n√

1− diag(Ht
n)

)
(4)

where confidence interval Ψ(x):

Ψ(x) = max{−λ
√
2/M,min(λ

√
2/M, x)}

and the hat matrix Ht
n:

Ht
n = xt

n(x
tT

n xt
n)

−1xtT

n

with eti,n =
25(M−1)(wt

i,n−B̂nx
t
i,n−Ân)

37(M+4)median
i

(|wt
i,n−B̂nxt

i,n−Ân|)
.

The distance between the point and the robust line is
described by the confidence score derived from the normalised
residual, which can be used to evaluate if the point is anoma-
lous. Following the computation of the parameter’s confidence
score, and in light of the fact that some attackers want to

generate updates with abnormal magnitudes in order to boost
the damage, a useful protection is to identify low confidence
values based on a threshold δ. Once the server recognises an
update wt

i,n of the client i with confidence values less than δ,
rather than altering this update to the repeat median estimation,
our technique replaces it with the median of wt

n, as follows:

wt
i,n =

{
wt

i,n if sti,n > δ

median
i

{
wt

i,n

}
if sti,n ≤ δ

(5)

With the above, not only we bound the range of updates,
but also improve the aggregation by introducing a robustness
estimator.

2) Reputation Model: During the aggregation phase in FL,
we use a subjective logic model to produce client reputation
scores. The subjective logic model is a subset of probabilistic
logic that depicts probability values of belief and disbelief
as degrees of uncertainty [3]. In the subjective logic model,
reputation score Rt

i for client i in t iteration correlates to a sub-
jective belief in the dependability of the client’s behaviour [39],
as measured by the belief metric opinion τ ti [9]. An opinion
is comprised of three elements: belief bti, disbelief dti and
uncertainty ut

i, with restrictions that bti + dti + ut
i = 1 and

bti, d
t
i, u

t
i ∈ [0, 1]. The reputation score may be calculated as

the expected value of an opinion E(τ ti) which can be regarded
as the degree of trustworthiness in client i. As a result, the
value of the client’s reputation is defined as follows:

Rt
i = E(τ ti) = bti + aut

i (6)
where a ∈ [0, 1] denotes the prior probability in the absence of
belief, which reflects the fraction of uncertainty that may be
converted to belief. On the other side, distinct observations
determined by the rectification phase in our Algorithm 2
are used to count belief, disbelief, and uncertainty opinions.
The positive observation denoted by P t

i indicates that the
update wt

i,n is accepted (sti,n > δ), whereas a negative
observation denoted by N t

i indicates that the update is rejected
(sti,n ≤ δ). As a consequence, the positive observations boost
the client’s reputation, and vice versa. To penalise the negative
observations from the unreliable updates, a higher weight η is
assigned to negative observations than the weight κ to positive
observations with constrain η + κ = 1. Therefore, in Beta
distribution below:

Beta(p|α, β) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (7)

with the constraints 0 ≤ x ≤ 1, parameters α > 0, β > 0, and
x ̸= 0 if α < 1 and x ̸= 1 if β < 1. The parameters α and β
that represent positive and negative observations respectively,
can be expressed as below{

α = κP t
i +Wa

β = ηN t
i +W (1− a)

(8)

where W is the non-information prior weight and the default
value is 2 [3].

As a consequence, the expected value of Beta distribution,
which also stands for reputation value, can be calculated as
follows:

E(Beta(p|α, β)) = α

α+ β
=

κP t
i +Wa

κP t
i + ηN t

i +W
= Rt

i (9)

Based on (6) and (9), we can derive

5

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Number of Iterations

R
ep

u
ta

ti
o

n
S

co
re

(a) single attack

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Number of Iterations

R
ep

u
ta

ti
o

n
S

co
re

(b) continuous attack

Client (10)

Client (20)

Client (30)

Client (40)

Client (50)

Fig. 3: The decay of reputation score in Client (X) with X
model parameters when they (a) attack once at 3rd iteration
and (b) attack continuously at and after the 3rd iteration.


bti =

κP t
i

κP t
i +ηNt

i+W

dti =
ηNt

i

κP t
i +ηNt

i+W

ut
i =

W
κP t

i +ηNt
i+W

(10)

In addition, in order to take the client’s historical reputation
values in previous rounds into consideration, a time decay
mechanism is included to lower the relevance of past perfor-
mances without disregarding their influence. In other words,
the reputation value from the most recent iteration contributes
the most to the reputation model. We use exponential time
decay in our model, as shown below:

θj,t = exp(−c(t− j)) (11)
where ∃c > 0, j ∈ [s̃, t], s̃ = max (t− s, 0). We include a
sliding window with a window length s that allows us to get
a reputation for a certain time interval rather than the entire
training procedure. We remove expired tuples with timestamps
outside the window period during computation since they
cannot provide meaningful information for the reputation.
Hence, the final reputation score R̃t

i can be expressed as:

R̃t
i =

∑t
j=s̃ θj,tR

j
i∑t

j=s̃ θj,t
(12)

To demonstrate how the reputation model evolves, we
consider four scenarios where each client: (i) only attacks once
at the same iteration, (ii) attacks continuously after launching
an attack at the same iteration, (iii) only attacks once at
different iteration, (iv) attacks continuously after launching an
attack at different iteration. Here, clients conduct attacks as
described in Section IV-A2 by utilising polluted data while
training the local model, whereas the server uses our attack
detection mechanism to identify these attacks.

Figure 3 displays the first two scenarios (i)-Figure 3a
and (ii)-Figure 3b, respectively with Client X , who has X
parameters in their local models, under single and continuous
attack. In Figure 3a, all of the clients only attack once at
the third iteration. When they start attacking, their reputation
score plummets dramatically. In both scenarios, we observe the
client who has more parameters has a larger relative decline in
reputation score. This is also compatible with Corollary 1 in
the Section III-C, that is, increasing the number of parameters
N in the global model results in a lower error rate.

Figure 4 shows the last two scenarios (iii) and (iv) re-
spectively with clients, who have 20 parameters in their local
models, under single and continuous attack. In Figure 4a,

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Number of Iterations

R
ep

u
ta

ti
o

n
S

co
re

(a) single attack

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Number of Iterations

R
ep

u
ta

ti
o

n
S

co
re

(b) coutinuous attack

Client 2

Client 3

Client 4

Client 5

Client 6

Client 7

Client 8

Client 9

Client 10

Client 1

Fig. 4: The decay of reputation score in Client X with same
model parameters when they (a) attack once at X iteration and
(b) attack continuously after starting to attack at X iteration.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1.0

Number of Iterations

R
ep

u
ta

ti
o

n
S

c
o

re

Client(1k)

Client(10K)

Client(100K)

Client(1M)

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1.0

Number of Iterations

R
e

p
u

ta
ti

o
n

S
co

re

Client (50)

Client (60)

Client (70)

Client (80)

Fig. 5: The decay of reputation score in (left) Client with X
model parameters when they attack at 10, 50 and 90 iteration;
(right) Client X with 1 million parameters when they attack
at 10 and 10 +X iteration.

Client X only launches an attack at X iteration. We observe
that only one attack would lead to at least a 25.11% relative
decrease in reputation score. In Figure 4b, Client X launches
an attack at X iteration and keeps attacking in the following
iterations. We observe in the end that 80% of their reputation
scores are below 0.5, which is approximately half of the
reputation score of honest clients, implying that the damage
that they can inflict throughout the aggregation process is
considerably decreased.

In addition, we consider a scenario in which an attacker
spreads out the poisoning over a longer time duration, while
using a higher number of model parameters. Figure 5 (left)
depicts an attack over 40 iterations under different parameter
sizes. Figure 5 (right) depicts an attack with 1 million param-
eters repeating every 50 to 80 iterations. These figures show
that even if attackers spread our poisoning over multiple iter-
ations and then try to recover their reputation score by acting
benignly, our detection scheme can still identify them. This
is because our attack detection and reputation schemes work
in sequence. The attack detection scheme detects malicious
updates without considering any reputation scores and rectifies
them to mitigate damage. Then, the reputation scheme modifies
the reputation scores based on the detection results. Also,
attackers that employ a higher number of model parameters
suffer a slightly higher reduction of reputation, which is
consistent with Corollary 1.

3) Aggregation Algorithm: Algorithm 2 explains our ag-
gregation method based on the attack detection scheme and
subjective logic reputation model. First, the server sends all
clients the pre-trained global model with initial parameters.
Then, using their own data samples, clients train the global
model locally and send the trained parameters back to the
server. At this point, the server executes the attack detection
scheme. In round t, if the n-th update parameter wt

i,n from

6

Algorithm 2: Aggregation Algorithm
Server :
Input : w0 ← Pretrained Model

κ,η,a,W ,c,s ← Reputation parameters
Output: Global model Mglobal with wT

1 for Iteration t← 1 to T do
2 // Broadcast global model to clients
3 send(wt−1);
4 // Wait until all updates arrive
5 receive(wt);
6 // Rescale parameters by Algorithm 1
7 w̄t ← Rescale(wt);
8 for n← 1 to N do
9 for i← 1 to M do

10 // Compute parameter confidence
11 sti,n = Eq 4(w̄t

i,n);
12 // Rectify abnormal parameters
13 wt

i,n := Eq 5 (sti,n, δ);
14 record (P t

i , N
t
i);

15 end for
16 end for
17 for i← 1 to M do
18 // Calculate reputation score

19 R̃t
i = Eq 12(P t

i , N t
i , κ, η, a, W , c, s);

20 end for
21 // Normalisation

22 R̄t ← Norm(R̃t);
23 for n← 1 to N do
24 // Update the parameters

25 wt
n :=

∑M
i=1

R̄t
i∑M

i=1 R̄t
i

wt
i,n;

26 end for
27 // Obtain parameters for global model
28 wt := [wt

1, · · · , wt
n];

29 end for
Client :

1 for Client i← 1 to M do in parallel
2 receive(wt−1);
3 // Train local model

4 wt
i ← wt−1

i − r
∂ℓi(w

t−1
i)

∂w ;
5 send(wt

i);
6 end forpar

the client i has been rectified by the attack detection scheme
in Section III-B1 to the median value, the server regards it
as a negative observation, whereas no rectification represents
a positive observation. Then, the server punishes the negative
observation by reducing the corresponding client’s reputation.
Both types of observations are accumulated through all the N
parameters of client i to obtain the reputation value R̃t

i in t
round for client i so as to all the other clients. The server would
conduct Min-Max normalisation to obtain R̄t after receiving
the reputation values R̃t of all the clients in t round.

After the server gets correction updates and the normalised
reputation of each client, it aggregates the updates using
average weighted reputation as the weights to get our global
model updates for the current iteration. In this way, even

over many training rounds, the attackers are still incapable
of shifting parameters notably from the target direction and
this ensures the quality of the resulting global model as will
be demonstrated experimentally and analytically next.

C. Theoretical Guarantees

We prove the convergence of our reputation-based aggrega-
tion method. Our major results are Theorem 1 and Corollary 1,
which state that convergence is guaranteed in bounded time.
Regarding the performance of our algorithm in terms of
metric average accuracy and convergence, we show that it is
consistent with our theoretical analysis. We start by stating our
assumptions, which are standard and common for such types
of results, and per recent works such as [7], [20].

Assumption 1 (Smoothness). The loss functions are L-
smooth, which means they are continuously differentiable and
their gradients are Lipschitz-continuous with Lipschitz con-
stant L > 0, whereas:

∀i ∈ N, ∀w1,w2 ∈ Rd

∥∇L(w1))−∇L(w2))∥2 ≤ L ∥w1 −w2∥2
∥∇ℓ(w1;D)−∇ℓ(w2;D)∥2 ≤ L∥w1 −w2∥2

Assumption 2 (Bounded Gradient). The expected square norm
of gradients ⊒ is bounded:

∀w ∈ Rd,∃Gw <∞,E ∥∇ℓ(w;D)∥22 ≤ Gw
Assumption 3 (Bounded Variance). The variance of gradients
w is bounded:
∀w ∈ Rd,∃Vw <∞,E ∥∇ℓ(w;D)− E(∇ℓ(w;D)∥22 ≤ Vw

Assumption 4 (Convexity). The loss function L(⊒) are µ-
strongly convex:

∃µ > 0,∀w1,w2 ∈ Rd,∇L(w∗) = 0

L(w1)− L(w2) ≥ ⟨∇L(w2),w1 −w2⟩+
µ

2
∥w1 −w2∥22

Suppose the percentage of attackers in the whole clients is
p, and all the clients in the system participant every training
iteration. r is the learning rate(r < 1

L) and Q̂ = max {Qi}Mi=1.
∀w ∈ W , we denote

mi(w
t) =

{
∗ if i ∈ malicious clients

∇li(wt;D) if i ∈ honest clients
where ∗ stands for an arbitrary value from the malicious
clients.

m(wt) =

M∑
i=1

R̄imi(w
t)

s.t. R̄i =
R̃t

i∑M
i=1 R̃

t
i

,

M∑
i=1

R̄i = 1, R̄i ∈ (0, 1)

Consider the assumptions above and lemmas presented in
Appendix A, we have

Theorem 1. Under Assumptions 1, 2, 3 and 4, ∃ϵ > 0 that:√
d log(1 + Q̂MLDϵ)

M(1− p)
+ C

Gw√
Q̂

+ p ≤ 1

2
− ϵ (13)

After t rounds, Algorithm 2 converges with probability at least

1− ξ ∈
[
1− 4d

(1+Q̂MLυ)
d , 1

)
as

7

∥∥wt −w∗∥∥
2
≤ (1− Lr)

t ∥∥w0 −w∗∥∥
2
+

√
N

L
∆1 +

1

L
∆2

(14)

where
∆1 =

M
(
ϖ(M − 1) + 2E√

Mδ

)
Wa(M−1)(κN+W)
(ηN+W)(κN+Wa) + 1

∆2 = 2
√
2

1

MQ̂
+

√
2

Q̂
DϵVw

√
d log(1 + Q̂MLυ)

M(1− p)
+ C

Gw√
Q̂

+ p


Dϵ :=

√
2π exp

(
1

2
(Φ(1− ϵ))

2

)
with Φ (·) being the cumulative distribution function of Wald
distribution.

Corollary 1. Continuing with Theorem 1, when the itera-
tions satisfy t ≥ 1

Lr log
(

L√
N∆1+∆2

∥∥w0 −w∗
∥∥
2

)
, ∃ξ ∈(

0, 4d

(1+Q̂MLυ)
d

]
, we have:

P
(∥∥wt −w∗∥∥

2
≤ 2

√
N

L
∆1 +

2

L
∆2

)
≥ 1− ξ

Remark 1. Due to

∆1 := O
(

ϖ

aκWN
+

1

κN
+

1√
MNδ

)
and

∆2 := O

 1

Q̂
+

p√
Q̂

+
1√
Q̂M


Based on Corollary 1, we achieve an error rate:

O

 ϖ

aκW
√
N

+
1

κ
√
N

+
1√
Mδ

+
1

Q̂
+

p√
Q̂

+
1√
Q̂M


we observe the experimental results in Figure 3 and 11 of

Sections III and IV respectively, when varying the parameters
of N , p, a and κ, results are consistent with this error rate.

Remark 2. Derived from the Corollary 1 and Remark 1, there
is a trade-off problem between convergence speed and error
rate according to the level of reward κ and punishment η from
the reputation model. This trade-off problem is mainly based
on the fact that if the model penalises the bad behaviours of
clients heavily, it would decrease their reputation dramatically
so the model would take a longer time to converge. On the
other hand, mitigating the punishment to increase the reward,
would lead to an increase in the error rate.

IV. PERFORMANCE EVALUATION

The objectives of our experimental evaluation are the
following: (a) evaluate the performance of our aggregation
method against other state-of-art robust aggregation methods,
(b) benchmark it in three different scenarios, namely, no attack,
label flipping attack, and backdoor attack, (c) do so using a
text based real-world dataset of sensitive categories from [4]
to which we will henceforth refer to as SURL, and finally
(d) show that our experimental result are consistent with our
previous theoretical analysis.

A. Experimental Setup

1) Datasets: The SURL dataset comes from a crowd-
sourcing taxonomy in the Curlie project [32], containing six
categories of URLs: five sensitive categories (Health, Politics,
Religion, Sexual Orientation, Ethnicity) and one for non-
sensitive URLs, with a total of 442,190 webpages. The number
of URLs in sensitive and non-sensitive categories are equally
balanced. Each sample contains content, metadata and a class
label of the webpage. For the SURL text classification task,
we train a neural network with three fully connected layers
and a final softmax output layer, same as in the evaluated
methods [16], [20]. Furthermore, in order to fulfil the funda-
mental setting of an heterogeneous and unbalanced dataset for
FL, we sample uk from a Dirichlet distribution [18] with the
concentration parameter ι = 0.9 as in [12], which controls the
imbalance level of the dataset, then assigns a uk,i fraction of
samples in class k to client i, with the intention of generating
non-IID and unbalanced data partitions. As a sanity check, we
also tested our reputation scheme on a different classification
task involving images and got consistent results as those we
got for sensitive content (see Appendix C).

2) Threat Model: We consider the following threat model.
Attack capability: In the FL setting, the malicious clients have
complete control over their local training data, training process
and training hyper-parameters, e.g., the learning rate, iterations
and batch size. They can pollute the training data as well as
the parameters of the trained model before submitting it to the
server but cannot impact the training process of other clients.
We follow the common practice in the computer security field
of overrating the attacker’s capability rather than underrating
it, so we limit our analysis to worst-case scenarios. There, an
attacker has perfect knowledge about the learning algorithm,
the loss function, the training data and is able to inspect
the global model parameters. However, attackers would still
have to train with the model published by the server, thus
complying with the prescribed training scheme by FL to their
local data. Furthermore, the percentage of byzantine clients p
is an important factor that determines the level of success for
the attack. We assume that the number of attackers is less than
the number of honest clients, which is a common setting in
similar methods [16], [20] to the ones we evaluate and compare
our method with.
Attack strategy: We focus on two common attack strategies
for sensitive context classification, namely, (i) label flipping
attack [24] and (ii) backdoor attack [12]. Comparing to other
attacks, for example model poisoning attack [29], [63], these
two data poisoning attacks are more likely to be carried out by
real users in the real world via our browser extension described
in Section V, since polluting data is easier than manipulating
model updates using the browser extension. Note that privacy
attacks including membership inference attack [65] and prop-
erty inference attack [64], are out of the scope of this paper,
but form part of our ongoing and future work.

In a label flipping attack, the attacker flips the labels of
training samples to a targeted label and trains the model
accordingly. In our case, the attacker changes the label of
“Health” to “Non-sensitive”. In a backdoor attack, attackers
inject a designed pattern into their local data and train these
manipulated data with clean data, in order to develop a
local model that learns to recognise such pattern. We realise

8

backdoor attacks inserting the top 10 frequent words with their
frequencies for the “Health” category. Therein the backdoor
targets are the labels “non-sensitive”. A successful backdoor
attack would acquire a global model that predicts the backdoor
target label for data along with specific patterns.

For both attacks, instead of a single-shot attack where an
attacker only attacks in one round during the training, we
enhance the attacker by a repeated attack schedule in which an
attacker submits the malicious updates in every round of the
training process. Also, we evaluate a looping attack where the
attackers spreads out poisoning every 30 epochs for the label
flipping attack based on Figure 5. It is important to note that
even if the attackers have full knowledge of our method, they
would still be unable to mount smarter attacks that would try to
maximise the damage caused while minimising their reputation
drop. This is because the attackers are unaware and cannot
compute their reputation score since the latter is computed at
the server and requires input from all clients. Moreover, we
allow extra training epochs for an attacker, namely, being able
to train the local models with 5 more epochs as in [12].

3) Evaluated Aggregation Methods: We compare the per-
formance of our aggregation method against the existing state-
of-the-art in the area FedAvg [5], as well as against popu-
lar robust aggregation methods such as Coordinate-wise me-
dian [20], Trimmed-mean [20], FoolsGold [8], [15], Residual-
based re-weighting [16], and FLTrust [60].

FedAvg is a FL aggregation method that demonstrates im-
pressive empirical performance in non-adversarial settings [5].
Nevertheless, even a single adversarial client could control the
global model in FedAvg easily [27]. This method averages
local model updates of clients as a global model update
weighted by the fraction of training samples size of each client
compared to total training samples size. We use it as baseline
evaluation to assess the performance of our method.
Median is using coordinate-wise median for aggregation. After
receiving the updates in round t, the global update is set
equal to the coordinate-wise median of the updates, where the
median is the 1-dimensional median.
Trimmed-mean is another coordinate-wise mean aggregation
technique that requires prior knowledge of the attacker fraction
β, which should be less than half of the number of model
parameters. For each model parameter, the server eliminates
the highest and lowest β values from the updates before
computing the aggregated mean with remaining values.
FoolsGold presents a strong defence against attacks in FL,
based on a similarity metric. Such approach identifies attackers
based on the similarity of the client updates and decreases
the aggregate weights of participating parties that provide
indistinguishable gradient updates frequently while keeping
the weights of parties that offer distinct gradient updates. It
is an effective defence for sybil attacks but it requires more
iterations to converge to an acceptable accuracy.
Residual-based re-weighting weights each local model by
accumulating the outcome of its residual-based parameter
confidence multiplying the standard deviation of parameter
based on the robust regression through all the parameters of
this local model. In our reputation-based aggregation method,
we implement the same re-weighting scheme IRLS [10] as
residual-based aggregation, but choose the collection of repu-
tation as the weights of clients’ local models.

FLTrust establishes trust in the system by bootstrapping it
via the server, instead of depending entirely on updates from
clients, like the other methods do. The server obtains an initial
server model trained on clean root data. Then, depending on
the cosine similarity of the server model and each local model,
it assigns a trust score to each client in each iteration.

4) Performance Metrics: We use the average accuracy
(Avg-ACC) of the global model to evaluate the result of the
aggregation defence for the poisoning attack in which attackers
aim to mislead the global model during the testing phase. The
accuracy is the percentage of testing examples with the correct
predictions by the global model in the whole testing dataset,
which is defined as:

Avg-ACC =
correct predictions

testing samples

In addition, there is existence of targeted attacks that aim
to attack a specific label while keeping the accuracy of
classification on other labels unaltered. Therefore, instead of
Avg-ACC, we choose the attack success rate (ASR) to measure
how many of the samples that are attacked, are classified as
the target label chosen by a malicious client, namely:

ASR =
successfully attacked samples

attacked samples

A robust federated aggregation method would obtain higher
Avg-ACC as well as a lower ASR under poisoning attacks.
An ideal aggregation method can achieve 100% Avg-ACC and
has the ASR as low as the fraction of attacked samples from
the target label.

5) Evaluation Setup: For the malicious attack, we assume
that 30% of the clients are malicious as in [27], which is
also a common byzantine consensus threshold for resistance
to failures in a typical distributed system [6]. For the server-
side setting, in order to evaluate the reliability of the local
model updates sent by the client to the server, we assume that
the server has the ability to look into and verify the critical
properties of the updates from the clients before aggregating.

Also, we only consider FL to be executed in a synchronous
manner, as most existing FL defences require [7], [20], [27],
[29]. For all the above aggregation methods under attack, we
perform 100 iterations using the SURL dataset with a batch
size of 64 and 10 clients. Furthermore, we evaluate our method
for increasing numbers of clients. These settings are inline with
existing state-of-the-art methods for security in FL [12], [16],
[20] More details related to the training setting are presented
in Appendix B.

B. Convergence and Accuracy

In Figure 6 (left), we analyse the performance of our
method in the no attack scenario and compare the convergence
and accuracy of our method with others during training. We
show the training loss (left axis) and average accuracy (right
axis) during 100 training iterations for 7 methods.

Our aggregation starts with the lowest training loss and
maintains it throughout the training process. It only takes
24 iterations to achieve 82% accuracy and then converge to
82.13%, which represents a 2.7× faster converge rate than
FedAvg. In comparison, Residual-based and Trimmed-mean

9

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0%

20%

40%

60%

80%

100%

No Attack

Number of Iterations

T
ra

in
in

g
L

o
ss

(T
L

)

A
verag

e
A

ccu
racy

(A
A

)

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0%

20%

40%

60%

80%

100%

Label Flipping Attack

Number of Iterations

T
ra

in
in

g
L

o
ss

(T
L

)

A
verag

e
A

ccu
racy

(A
A

)

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0%

20%

40%

60%

80%

100%

Backdoor Attack

Number of Iterations

T
ra

in
in

g
L

o
ss

(T
L

)

A
verag

e
A

ccu
racy

(A
A

)

TL(Reputation) TL(FedAvg) TL(Residual) TL(Median)

TL(Trimmed-mean) TL(Foolsgold) TL(FLTrust)

AA(Reputation) AA(FedAvg) AA(Residual) AA(Median)

AA(Trimmed-mean) AA(Foolsgold) AA(FLTrust)

Fig. 6: Training Loss (TL) and Average Accuracy (AA) for 100 epochs of Reputation-based, FedAvg, Residual-based, Median,
Trimmed-mean, FoolsGold and FLTrust methods in SURL Dataset under no attack (left) scenario, under label flipping attack
(middle) and backdoor attack (right) scenarios with 30% malicious clients.

have almost identical training loss and take 52 and 47 iterations
to reach 82% accuracy and practically converge to 81.79% and
80.76% respectively, which is 2.2× and 2× slower than our
reputation method. Median reaches 81% at 83 rounds and after
that converges to 79.94%, which amounts to a 3.6× slower
converge rate than our method. Especially, Foolsgold and
FLTrust are slow to converge and do not converge within 100
iterations, so our convergence rate is at least 4.2× better than
FoolsGold and FLTrust. This demonstrates that our reputation
model benefits from convergence speed and accuracy perfor-
mance. This is because our reputation scheme assigns higher
weight to more reliable clients when there is no ongoing attack,
which generates more consistent updates thereby accelerating
the convergence.

C. Resilience to Attacks

We begin by analysing the performance with a static
percentage (30%) of attackers, and then move on to the
performance with a varying percentage of attackers under label
flipping and backdoor attacks.

1) Label Flipping Attack: Static percentage of attack-
ers: Figure 6 (middle) shows the convergence of mentioned
methods under label flipping attack. Our method converges
1.8× to 2× faster than all competing state-of-the-art methods
under attack, enlarging its performance benefits compared to
the no attack scenario. In addition, our method outperforms
competing methods by at least 1.4% in terms of accuracy.
Varying the percentage of attackers: Here we analyse the
impact on our aggregation method as the proportion of attack-
ers increases. Figure 7 (left) shows the change of performance
metrics for varying percentage of attackers for seven evaluated
methods When the percentage of attackers p ranges from
10% to 50%, our method is resistant against label flipping
attacks with a small loss in accuracy and a consistent attack
success rate of all the methods. As p approaches 50%, Fe-
dAvg, Residual-based, Median and FLTrust defences become
ineffective in mitigating the attack, and correspondingly their
Avg-ACC decreases linearly. Moreover, under label flipping
attack during the whole process, our reputation-based method
has the highest accuracy outperforming other methods by 1%

to 23.1%. At the same time it has the lowest ASR. The average
ASR of other methods are at least 82.8% higher than ours.

2) Backdoor Attack: Static percentage of attackers: Fig-
ure 6 (right) shows the convergence of mentioned methods
under backdoor attack. Same as in no attack and label flipping
attack scenario, our method converges 1.6× to 2.4× faster than
all competing state-of-the-art methods. In addition, our method
outperforms competing methods by 3.5% to 33.6% in terms
of classification accuracy.
Varied percentage of attackers: We examine the scenario in
which the percentage of attackers increases. Figure 7 (right)
shows the performance for the seven evaluated methods under
backdoor attack when varying the percentage of attackers p
from 10% to 50%. Figure 7 (right) demonstrates that under
backdoor attack, our reputation-based method has a consis-
tent accuracy throughout the process with the lowest attack
success rate, whereas the average ASR of other methods is
at least 72.3% higher than ours. As p changes, the ASR of
the Residual-based, Median, and Foolsgold methods increase
linearly. Although FLTrust has a stable ASR, it increases by a
factor of 1.39 when p reaches 50%.

First, we evaluate a varying compromise rate for the
label flipping and backdoor attacks using our reputation-based
method. For the label-flipping attack, we vary the percentage of
the flipped label poisoned by attackers from 10% to 90%. Also,
for the backdoor attack, we vary the number of top frequent
words inserted as the trigger pattern, from 5 to 25. The remain-
ing settings are the same as in previous experiments. Figure 8
plots the ACC and ASR when varying the compromise rate for
both attacks. Figure 8 (left) shows that when the percentage
of the poisoned sample is increased, it leads to the decrease
of the accuracy of the model and to a slight increase of ASR.
Figure 8 (right) shows that when we increase the number of
frequent words from 5 to 20, the ASR remains unaffected.
When the frequent words exceed 25, the attack becomes less
stealthy and thus can be more easily detected resulting in a
lower ASR.

We also evaluate the performance of our method in terms of
the number of participating clients. With a 30% compromise
rate, we expand the number of clients from 10 to 200. Our

10

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Percentage of Attackers

A
ve

ra
ge

A
cc

ur
ac

y

A
ttack

S
uccess

R
ate

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Percentage of Attackers

A
ve

ra
ge

A
cc

ur
ac

y

A
ttack

S
uccess

R
ate

ACC(Reputation-based) ACC(FedAvg) ACC(Residual-based) ACC(Median)

ACC(Trimmed-mean) ACC(Foolsgold) ACC(FLTrust)

ASR(Reputation-based) ASR(FedAvg) ASR(Residual-based) ASR(Median)

ASR(Trimmed-mean) ASR(Foolsgold) ASR(FLTrust)

Fig. 7: Average accuracy (ACC) and attack success rate (ASR) for varying percentage of attackers from 10% to 50% under label
flipping (left) and backdoor (right) attack for Reputation-based, FedAvg, Residual-based, Median, Trimmed-mean, FoolsGold
and FLTrust methods in SURL Dataset.

10% 30% 50% 70% 90%
60%

70%

80%

90%

0%

4%

8%

12%

Label Flipping Attack

Sample Percentage

A
C

C

A
S

RACC

ASR

5 10 15 20 25
60%

70%

80%

90%

0%

20%

40%

60%

80%

Backdoor Attack

Numbers of Frequent Words

A
C

C

A
S

R

ACC

ASR

Fig. 8: ACC and ASR as we vary the percentage of flipped
label from 10% to 90% (left) for label flipping attack, and the
number of the frequent words as the trigger pattern from 5 to
25 for backdoor attack(right).

10 50 100 150 200
0%

20%

40%

60%

80%

100%

Numbers of Clients

A
C

C

10 50 100 150 200
0%

20%

40%

60%

80%

100%

Numbers of Clients

A
S

R

No Attack

Label Flipping

Backdoor

Fig. 9: Average accuracy (ACC) and attack success rate (ASR)
for varying the number of clients from 10 to 200 under label
flipping and backdoor attack with 30% malicious clients.

method performs consistently for a larger number of clients,
as seen by the stable ACC and ASR as the number of clients
grows in Figure 9.

3) Analysis of Attacks: Finally, instead of repeating the
attack at every epoch, the attacker stretches poisoning across
30 epochs in our study of the looping attack. The performance
of the looping attack is seen in Figure 10. As expected, the
looping attack is not as effective as the repeated attack that
we previously assessed. All the methods manage to defend it
with low ASR, and our method still has the greatest accuracy.

4) Evaluation Results: In the no attack scenario, we ob-
serve (i) Our method converges 2× to 4.2× faster than all
competing state-of-the-art methods. (ii) Our method is at
least as good or outperforms competing methods in terms of
classification accuracy. The above validates that our reputation
scheme is helpful even in the no attack scenario. This is due
to the fact that in our algorithm we give higher weights to the
clients with high-quality updates, as illustrated in Figure 12,
causing the model to converge rapidly and retain consistent
accuracy. In addition, even under the two different attacks,
our method:

• converges 1.6× to 2.4× faster than all competing state-
of-the-art methods.
• provides the same or better accuracy than competing
methods.
• yields the lowest ASR compared to all other methods,
with the average ASR of them being at least 72.3% higher
than ours.

We obtained comparable findings for the evaluation of the
aforementioned methods on 100 clients, as presented in Ap-
pendix D. Furthermore, the result is consistent with the theo-
retical analysis: as p increases, so does the error rate.

D. Stability of Hyper-parameters

We employ four hyper-parameters in our reputation model:
rewarding weight κ, prior probability a, time decay parameter
c and window length s. As shown in Remark 1, c and s do not
affect the performance of our model, we only consider hyper-
parameters κ and a, where κ controls the reward weight to
positive observations and a controls the fraction of uncertainty
converted to belief. To demonstrate the impact of these two
hyper-parameters of our reputation model, we grid search κ in
[0.1, 0.2, 0.3, 0.4] and a in [0.1, 0.3, 0.5, 0.7, 0.9]. The setup is
the same as on SURL dataset under label flipping attack. The
ultimate accuracy of stability of reputation-based aggregation

11

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

0%

10%

20%

30%

40%

50%

Label Flipping Attack

Percentage of attackers

A
C

C

A
S

R

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

0%

10%

20%

30%

40%

50%

Backdoor Attack

Percentage of attackers

A
C

C

A
S

R

ACC(Reputation) ACC(FedAvg) ACC(Residual) ACC(Median)

ACC(Trimmed-mean) ACC(FLTrust)

ASR(Reputation) ASR(FedAvg) ASR(Residua) ASR(Median)

ASR(Trimmed-mean) ASR(FLTrust)

ACC(Foolsgold)

ASR(Foolsgold)

Fig. 10: Average accuracy (ACC) and attack success rate
(ASR) for varying percentage of attackers from 10% to 50%
under label flipping (left) and backdoor (right) attack with a
looping attack in which an attacker attacks every 30 epochs.

(a) Accuracy (b) Attack Success Rate

Fig. 11: Average accuracy and attack success rate as we vary
rewarding weight κ and prior probability a.

are shown in Figure 11. Note that these results are tested for
the label flipping attack and they hold according to theory also
for backdoor.

The result in Figure 11 demonstrates that our approach is
very stable and efficient in terms of hyper-parameter selection,
and it achieves a high degree of precision. Furthermore, the re-
sult is compatible with the theoretical analysis in Section III-C.

E. Comparison against a residual-based method

To demonstrate how our method improves the residual-
base method by assigning the aggregation weights based on
reputation, we consider a scenario with 10 clients in the
FL system, 8 of which are malicious. The training lasts 10
communication rounds during which attackers carry out the
backdoor attack. The remaining settings are the same as the
default. Results are shown in Figure 12, in which the first two
clients are benign, and the rest are malicious. We observe that
for our reputation method the aggregation weights of malicious
clients, which are their reputations, are rectified to 0 since the
second round, demonstrating that our method is successful in
eradicating their influence. On the other hand, the aggregate
weights of malicious clients in residual-based methods, which
are calculated by multiplying the parameter confidence by
its standard deviation, are nearly similar and non-zero. This
is because repeated median regression seldom yields 0 for
the parameter confidence, which causes practically non-zero
weights to be assigned to malicious clients by residual-based
methods. To address this issue, the reputation model uses
positive and negative observations that introduce rewards and
punishments to assign divergent weights to clients. As a result,
benign clients are given higher weights whereas malicious
clients are eliminated from the aggregation.

1 2 3 4 5 6 7 8 9 10

A

B

C

D

E

F

G

H

I

J

Reputation

Numbers of iterations

C
li

e
n

t

1 2 3 4 5 6 7 8 9 10

A

B

C

D

E

F

G

H

I

J

Residual

Numbers of iterations

C
li

e
n

t

0

0.2

0.4

0.6

Fig. 12: The aggregation weights of clients from our
reputation-based (left) and residual-based method (right) for
10 communication rounds under label flipping attack with 80%
attackers.

Fig. 13: EITR extension in action. The letter “H” inside the
red frame at the bottom right of the extension’s icon indicates
that a health-related page has been detected.

V. THE EITR SYSTEM

In this section, we provide a high level description of
our EITR [67] system (standing for “Elephant In the Room”
of privacy). We then present some preliminary results with
real users demonstrating the ability of the system to quickly
learn how to classify yet unseen sensitive content, in our case
COVID-19 URLs pertaining to the category Health, even in
view of inaccurate user input. The system is currently being
used as a research prototype to evaluate the robustness of
our algorithm in a simple real-world setting. A full in depth
description of the system and its performance with more users
and more intricate settings, including adoption, incentives, and
HCI issues, over a longer time period is the topic of our
ongoing efforts and will be covered by our future work.

A. System Architecture and Implementation

The EITR system is based on the client-server model.
The back-end server is responsible to distribute the initial
classification model and the consequent updated model(s) to
the clients and receive new annotations from the different
clients of the system. The client is in the form of a web browser
extension that is responsible to fetch and load the most recent
global classification model to the users’ browser from the back-
end server. The loaded model can then be used to label website
in real time into the 5 different sensitive topics as defined by
GDPR, i.e., Religion, Health, Politics, Ethnicity and Sexual
Orientation. Next, we provide more details for each part of

12

0.0 0.2 0.4 0.6 0.8 1.0
0

3

6

9

12

2

4

7
8 8 8

4 4 4

0
1

Reputation Score

N
u

m
b

er
o

f
U

se
rs

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%

Number of Iterations

A
cc

u
ra

cy

Accuracy(Centralise)

Accuracy(FL)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

False Positive Rate

T
ru

e
P

o
si

ti
ve

R
at

e

ROC curve (area = 0.79)

Fig. 14: Results of real-user experiment for COVID-19 related URLs with 50 users over 100 iterations. (left): the reputation
score of the real users at the end of experiment, (middle): the accuracy of the centralised classifier and the global model of our
reputation-based FL approach for COVID-19 URLs, and (right): the ROC curve of real-user experiment with 0.79 area under
the ROC curve (AUC).

the system.
Back-end server: The back-end server is written in JavaScript
using the node.js Express [40] framework. To build the initial
classification model we use the dataset provided by Matic
et al. [4], and the TensorFlow [41] and Keras [42] machine
learning libraries. The final trained model is then exported
using the TensorFlow.js [43] library in order to be able to
distribute it to the system’s clients (browser extension). The
back-end server also includes additional functionalities such
as the creation and distribution of users’ tasks, i.e., a short
list of URLs that the users need to visit and annotate, and an
entry point that collects the resulting users annotations during
the execution of the task.
Web browser extension: Currently the browser extension only
supports the Google Chrome browser and is implemented in
JavaScript using the Google Chrome Extension APIs [45].
To handle the classification model the extension utilises the
TensorFlow.js [43] library to load, use, and update the model.
The main functionality of the extension is to classify the
visited website in real time and provide information to the
user related to the predicted class as depicted in Figure 13.
The website classification is based on the metadata (included
in the website <head> HTML tag) and the visible text of the
website. The extension also allows users to provide their input
related to their agreement or disagreement with the predicted
class using a drop down list as depicted in Figure 13 with the
label “Choose a new Class”.

B. Real Users Experimental Setup

The goal of the real-user experiment is to evaluate our
federated reputation-based method on real user activity (instead
of systematic tests), and demonstrate that even with real users
with different comprehensions of the definition of sensitive
information, our method can learn new content fast and
achieve higher accuracy than centralised classifiers, which is
compatible with our simulation experiment.

For the setup, the participant is directed to visit the
experiment website that provides the necessary information
and instructions on the goal of our study, the definition of
sensitive information provided by the current GDPR and how
to participate in our study. In order to have access to the
browser extension and the installation instructions the user
must in advance give explicit consent and accept the data
privacy policy. Upon successful installation of the extension,

new users are asked to provide a valid email address (to contact
them for the reward) and then receive their task, a list of 20
URLs, that they need to visit and provide their labels in order
to successfully complete their task. The list of 20 URLs is
sampled by the Dirichlet distribution with ι = 0.9 for each
participant from a database, which includes 300 URLs with
sensitive and non-sensitive content related to COVID-19.

Ethical Considerations: We have ensured compliance with
the GDPR pertaining to collecting, handling, and storing data
generated by real users. To that end, we have acquired all
the proper approvals from our institutions. Furthermore, the
participants are directed to visit a pre-selected set of URLs
selected by us to avoid collecting the actual visiting patterns
of our users. In addition, the user input is only collected if and
only if the user explicitly provide input to the drop-down list
labelled “Choose a new Class” to avoid collecting the visiting
patterns of the user accidentally while they are executing their
tasks. Finally, we only use the users’ email address to contact
them for the reward. The mapping between the user input
and their email address is based on a random identifier that
is generated during the installation time of the extension.

C. Validation with Real Users

Data collection: We had 50 users participating in our exper-
iment. In order to evaluate our reputation-based FL method
using real-user data, we define a methodology to label ground
truth on COVID-19 related sites.
Ground truth methodology: To set the ground truth for
COVID-19 sites related to our sensitive or non-sensitive labels,
we create a database of 100 websites, which we collect by
searching on Google with the query “sensitive websites about
COVID-19” and choose the top 100 sites returned from the
query. Then, four experts in the privacy field, independently
annotate them based on their professional expertise in order to
achieve an agreement on whether each of those sites included
sensitive or non-sensitive content.
Ground truth annotation: In order to evaluate the annotation
of the 100 websites from human experts, we calculate the
inter-rater agreement among them using Fleiss Kappa [61]. We
obtain 0.56 of Fleiss Kappa, which is an acceptable agreement
because the values of Fleiss Kappa. above 0.5 are regarded as
good. Furthermore, given that COVID-19 is a controversial
issue, it is difficult for humans to agree on what constitutes
sensitive content relating to it. Even though, we still attain a

13

valid ground truth of 85 items belonging to the health sensitive
category with agreement ratings of at least 0.5. Note that
we also classify the above 100 websites using the centralised
classifier proposed in [4] and get only 53.13% accuracy.
Result with real users: Figure 14 shows the results of accu-
racy and reputation score with 50 real users in the experiment.
Figure 14 (left) shows that the majority of users have reputation
scores falling in the intermediate range, with some having a
very high reputation and a few having a very low reputation.
This indicates the divergence of the user’s interpretation of
the sensitive information as we expect. In Figure 14 (middle)
we compare the accuracy of the centralised classifier and the
global model of our reputation-based FL approach for COVID-
19 URLs. Despite the diversity of reputation scores of real
users, our method converges as rapidly as in simulation and
achieves an average accuracy of 80.36%, thereby verifying
the quick convergence and high accuracy results presented
in the previous sections. Figure 14 (right) shows that the
ROC curve in real-user experiment yielded 0.79 AUC. Our
result is acceptable in this scenario because most existing
FL techniques are designed to minimise the conventional cost
function and are not optimal for optimising more appropriate
metrics for imbalanced data, such as AUC [62].

As we observe, with real users holding our method achieve
a good performance. This means that, as new sensitive content
appears and/or is defined by GDPR or new upcoming legis-
lation, we will be able to continue training our FL model for
this type of task with quick convergence and good accuracy.
The empirical results in Figure 14 (middle) also shows that
there is a quick convergence to the accuracy’s stable value
within a small number of iterations (around 30), in line with
the theoretical results in Section III.

VI. CONCLUSION

In this paper we have shown how to use federated learning
to implement a robust to poisoning attacks distributed classifier
for sensitive web content. Having demonstrated the benefits of
our approach in terms of convergence rate and accuracy against
state-of-the-art approaches, we implemented and validated it
with real users using our EITR browser extension. Collectively,
our performance evaluation has showed that our reputation-
based approach to thwarting poisoning attacks consistently
converges faster than the state-of-the-art while maintaining or
improving the classification accuracy.

We are currently working towards disseminating EITR to a
larger user-base and using it to classify additional sensitive
and non-sensitive types of content. This includes but it is
not limited to categories defined by the users themselves for
different purposes, not necessarily related to sensitive content,
as well as evaluating additional attacks and threat models under
our subjective-logic reputation scheme for FL. In turn, our
approach can support other FL models going beyond sensitive
content classification in future work.

ACKNOWLEDGEMENTS

We thank the EITR volunteers for their help. This work and
dissemination efforts were supported in part by the Euro-
pean Commission under DataBri-X project (101070069), the
TV-HGGs project (OPPORTUNITY/0916/ERCCoG/0003) co-
funded by the European Regional Development Fund and the

Republic of Cyprus through the Research and Innovation Foun-
dation, and the European Research Council (ERC) Starting
Grant ResolutioNet (ERC-StG-679158).

REFERENCES

[1] McMahan, H., Ramage, D., Talwar, K. & Zhang, L. Learning differen-
tially private recurrent language models. Proceedings of ICLR. (2017)

[2] Mammen, P. Federated Learning: Opportunities and Challenges. ArXiv
Preprint ArXiv:2101.05428. (2021)

[3] Jøsang, A. Subjective logic. (Springer,2016)
[4] Matic, S., Iordanou, C., Smaragdakis, G. & Laoutaris, N. Identifying

Sensitive URLs at Web-Scale. Proceedings of The ACM Internet Mea-
surement Conference. pp. 619-633 (2020)

[5] McMahan, B., Moore, E., Ramage, D., Hampson, S. & Arcas, B.
Communication-Efficient Learning of Deep Networks from Decentral-
ized Data. Artificial Intelligence And Statistics. pp. 1273-1282 (2017)

[6] Castro, M., Liskov, B. Practical Byzantine Fault Tolerance. USENIX
OSDI. 99, 173-186 (1999)

[7] Xie, C., Koyejo, S. & Gupta, I. Zeno: Distributed Stochastic Gradient
Descent with Suspicion-based Fault-tolerance. International Conference
On Machine Learning. pp. 6893-6901 (2019)

[8] Fung, C., Yoon, C. & Beschastnikh, I. The Limitations
of Federated Learning in Sybil Settings. 23rd Interna-
tional Symposium On Research In Attacks, Intrusions
And Defenses (RAID 2020). pp. 301-316 (2020,10),
https://www.usenix.org/conference/raid2020/presentation/fung

[9] Josang, A., Hayward, R. & Pope, S. Trust Network Analysis with Sub-
jective Logic. Proceedings of The Twenty-Ninth Australasian Computer
Science Conference (ACSW 2006). pp. 85-94 (2006)

[10] Wilcox, R. Introduction to robust estimation and hypothesis testing.
(Academic press,2011)

[11] Krizhevsky, A., Hinton, G. & Others Learning Multiple Layers of
Features from Tiny Images. University of Toronto Technical Report,
2009.

[12] Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D. & Shmatikov, V. How
to Backdoor Federated Learning. International Conference on Artificial
Intelligence And Statistics. pp. 2938-2948 (2020)

[13] Konečny, J., McMahan, H., Yu, F., Richtárik, P., Suresh, A. & Bacon,
D. Federated Learning: Strategies for Improving Communication Effi-
ciency. Proceedings of NIPS. (2016)

[14] Siegel, A. Robust Regression using Repeated Medians. Biometrika. 69,
242-244 (1982)

[15] Fung, C., Yoon, C. & Beschastnikh, I. Mitigating Sybils in Federated
Learning Poisoning. ArXiv Preprint ArXiv:1808.04866. (2018)

[16] Fu, S., Xie, C., Li, B. & Chen, Q. Attack-resistant Federated Learning
with Residual-based Reweighting. AAAI Workshops: Towards Robust,
Secure And Efficient Machine Learning. (2021)

[17] Sun, Z., Kairouz, P., Suresh, A. & McMahan, H. Can you Really
Backdoor Federated Learning?. The 2nd International Workshop on
Federated Learning For Data Privacy And Confidentiality, in Neural
Information Processing Systems. (2019)

[18] Minka, T. Estimating a Dirichlet Distribution. (Technical report, MIT,
2000)

[19] He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image
Recognition. Proceedings Of The IEEE Conference On Computer Vision
And Pattern Recognition. pp. 770-778 (2016)

[20] Yin, D., Chen, Y., Kannan, R. & Bartlett, P. Byzantine-robust Dis-
tributed Learning: Towards Optimal Statistical Rates. International
Conference On Machine Learning. pp. 5650-5659 (2018)

[21] Minsker, S. Geometric Median and Robust Estimation in Banach
Spaces. Bernoulli. 21, 2308-2335 (2015)

[22] Karimireddy, S., He, L. & Jaggi, M. Learning from History for
Byzantine Robust Optimization. International Conference On Machine
Learning. pp. 5311-5319 (2021)

[23] Bubeck, S. Convex Optimization: Algorithms and Complexity. Founda-
tions and Trends in Machine Learning, 8 (3-4). (2014)

14

[24] Barreno, M., Nelson, B., Joseph, A. & Tygar, J. The Security of Machine
Learning. Machine Learning. 81, 121-148 (2010)

[25] Deng, J., Dong, W., Socher, R., Li, L., Li, K. & Fei-Fei, L. Imagenet:
A Large-scale Hierarchical Image Database. 2009 IEEE Conference On
Computer Vision And Pattern Recognition. pp. 248-255 (2009)

[26] Bhagoji, A., Chakraborty, S., Mittal, P. & Calo, S. Analyzing Federated
Learning through an Adversarial Lens. International Conference On
Machine Learning. pp. 634-643 (2019)

[27] Blanchard, P., El Mhamdi, E., Guerraoui, R. & Stainer, J. Machine
Learning with Adversaries: Byzantine Tolerant Gradient Descent. Pro-
ceedings Of The 31st International Conference On Neural Information
Processing Systems. pp. 118-128 (2017)

[28] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L. & Lerer, A. Automatic Differentia-
tion in Pytorch. (2017)

[29] Fang, M., Cao, X., Jia, J. & Gong, N. Local Model Poisoning Attacks
to Byzantine-robust Federated Learning. 29th USENIX Security Sympo-
sium. pp. 1605-1622 (2020)

[30] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan,
H., Patel, S., Ramage, D., Segal, A. & Seth, K. Practical Secure
Aggregation for Privacy-preserving Machine Learning. Proceedings of
The 2017 ACM SIGSAC Conference On Computer And Communications
Security. pp. 1175-1191 (2017)

[31] El Mahdi, E. M., Guerraoui, R., Rouault, S. The Hidden Vulnerability
of Distributed Learning in Byzantium. International Conference On
Machine Learning. pp. 3521-3530 (2018)

[32] Curlie.org Curlie - The Collector of URLs. (2019), https://curlie.org/
[33] Commission, E. Data protection in the EU, The General Data Pro-

tection Regulation (GDPR); Regulation (EU) 2016/679. (2018), https:
//ec.europa.eu/%0Ainfo/law/law-topic/data-protection/

[34] California, S. California Consumer Privacy Act - Assembly Bill
No. 375. (2018), https://leginfo.legislature.ca.gov/faces/billTextClient.
xhtml?bill id=201720180AB375

[35] Government of Canada. Amended Act on The Personal
Information Protection and Electronic Documents Act. (2018),
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-
personal-information-protection-and-electronic-documents-act-pipeda/

[36] Government of Israel. Protection of privacy regulations (data security)
5777-2017. (2018), https://www.gov.il/en/Departments/legalInfo/data
%0Asecurity regulation/

[37] European Commission. Personal Information Protection Commission,
J. Amended Act on the Protection of Personal Information. (2017),
https://www.ppc.go.jp/en/

[38] Australian Information Commissioner. Australian Privacy Principles
guidelines; Australian Privacy Principle 5 - Notification of the collection
of personal information. (2018), https://www.oaic.gov.au/agencies-and-
organisations/

[39] Kang, J., Xiong, Z., Niyato, D., Xie, S. & Zhang, J. Incentive Mecha-
nism for Reliable Federated Learning: A Joint Optimization Approach
to Combining Reputation and Contract Theory. IEEE Internet Of Things
Journal. 6, 10700-10714 (2019)

[40] Expressjs.com Express - Fast, unopinionated, minimalist web frame-
work for Node.js. (2021), https://expressjs.com/

[41] TensorFlow.org TensorFlow - An end-to-end open source machine
learning platform.. (2021), https://www.tensorflow.org/

[42] Keras.io Keras - Simple. Flexible. Powerful. (2021), https://keras.io/
[43] Tensorflow.org TensorFlow.js is a library for machine learning in

JavaScript. (2021), https://www.tensorflow.org/js
[44] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A.,

Ivanov, V., Kiddon, C., Konečny, J., Mazzocchi, S., McMahan, H.
Towards Federated Learning at Scale: System Design. Proceedings of
MLSys. (2019)

[45] Google Google Chrome Extension APIs. (2021),
https://developer.chrome.com/docs/extensions/reference/

[46] Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augen-
stein, S., Eichner, H., Kiddon, C. & Ramage, D. Federated Learning for
Mobile Keyboard Prediction. ArXiv Preprint ArXiv:1811.03604. (2018)

[47] Feng, J., Rong, C., Sun, F., Guo, D. & Li, Y. PMF: A Privacy-preserving
Human Mobility Prediction Framework via Federated Learning. Pro-

ceedings of The ACM On Interactive, Mobile, Wearable And Ubiquitous
Technologies. 4, 1-21 (2020)

[48] Yu, T., Li, T., Sun, Y., Nanda, S., Smith, V., Sekar, V. & Seshan,
S. Learning Context-aware Policies from Multiple Smart Homes via
Federated Multi-task Learning. IEEE/ACM International Conference
On Internet-of-Things Design And Implementation (IoTDI). pp. 104-
115 (2020)

[49] Huang, L., Shea, A., Qian, H., Masurkar, A., Deng, H. & Liu, D.
Patient Clustering Improves Efficiency of Federated Machine Learning
to Predict Mortality and Hospital Stay Time using Distributed Electronic
Medical Records. Journal Of Biomedical Informatics. 99 pp. 103291
(2019)

[50] Brisimi, T., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I. & Shi,
W. Federated Learning of Predictive Models from Federated Electronic
Health Records. International Journal Of Medical Informatics. 112 pp.
59-67 (2018)

[51] Lee, J., Sun, J., Wang, F., Wang, S., Jun, C. & Jiang, X. Privacy-
preserving Patient Similarity Learning in a Federated Environment:
Development and Analysis. JMIR Medical Informatics. 6, e7744 (2018)

[52] Ahn, E., Kumar, A., Feng, D., Fulham, M. & Kim, J. Unsupervised
Deep Transfer Feature Learning for Medical Image Classification. IEEE
International Symposium On Biomedical Imaging (ISBI 2019). pp.
1915-1918 (2019)

[53] Lin, B., He, C., Zeng, Z., Wang, H., Huang, Y., Soltanolkotabi, M.,
Ren, X. & Avestimehr, S. FedNLP: Benchmarking Federated Learning
Methods for Natural Language Processing Tasks. Annual Conference
of the North American Chapter of the Association for Computational
Linguistics (NAACL). (2022)

[54] Iordanou, C., Soriente, C., Sirivianos, M. & Laoutaris, N. Who is
Fiddling with Prices? Building and Deploying a Watchdog Service for
e-commerce. Proceedings of ACM SIGCOMM (2017)

[55] Iordanou, C., Kourtellis, N., Carrascosa, J., Soriente, C., Cuevas, R.
& Laoutaris, N. Beyond Content Analysis: Detecting Targeted Ads via
Distributed Counting. Proceedings Of The 15th International Confer-
ence On Emerging Networking Experiments And Technologies. pp. 110-
122 (2019)

[56] Su, D., Cao, J., Li, N., Bertino, E. & Jin, H. Differentially Private k-
means Clustering. Proceedings Of The Sixth ACM Conference On Data
And Application Security And Privacy. pp. 26-37 (2016)

[57] Cormode, G. & Muthukrishnan, S. An Improved Data Stream Summary:
the Count-Min Sketch and its Applications. Journal Of Algorithms. 55,
58-75 (2005)

[58] Salton, G. & Buckley, C. Term-weighting Approaches in Automatic
Text Retrieval. Information Processing and Management. 24, 513-523
(1988)

[59] Lopuhaa, H. & Rousseeuw, P. Breakdown points of Affine Equivariant
Estimators of Multivariate Location and Covariance Matrices. The
Annals Of Statistics. pp. 229-248 (1991)

[60] Cao, X., Fang, M., Liu, J. & Gong, N. FLTrust: Byzantine-robust
Federated Learning via Trust Bootstrapping. Proceedings Of NDSS.
(2021)

[61] Fleiss, J. Measuring Nominal Scale Agreement among Many Raters.
Psychological Bulletin. 76, 378 (1971)

[62] Yuan, Z., Guo, Z., Xu, Y., Ying, Y. & Yang, T. Federated Deep AUC
Maximization for Hetergeneous Data with a Constant Communica-
tion Complexity. International Conference On Machine Learning. pp.
12219-12229 (2021)

[63] Shejwalkar, V. & Houmansadr, A. Manipulating the Byzantine: Opti-
mizing Model Poisoning Attacks and Defenses for Federated Learning.
NDSS. (2021)

[64] Melis, L., Song, C., De Cristofaro, E. & Shmatikov, V. Exploiting
Unintended Feature Leakage in Collaborative Learning. 2019 IEEE
Symposium On Security And Privacy (SP). pp. 691-706 (2019)

[65] Naseri, M., Hayes, J. & De Cristofaro, E. Local and Central Differential
Privacy forRobustness and Privacy in Federated Learning. In Proceed-
ings of NDSS. (2022)

[66] Rieger, P., Nguyen, T., Miettinen, M. & Sadeghi, A. DeepSight: Miti-
gating Backdoor Attacks in Federated Learning Through Deep Model
Inspection. In Proceedings of NDSS. (2022)

[67] EITR System, https://eitr-experiment.networks.imdea.org (2022)

15

https://ec.europa.eu/%0Ainfo/law/law-topic/data-protection/
https://ec.europa.eu/%0Ainfo/law/law-topic/data-protection/
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://www.gov.il/en/Departments/legalInfo/data_%0Asecurity_regulation/
https://www.gov.il/en/Departments/legalInfo/data_%0Asecurity_regulation/

APPENDIX

A. Proofs

The following are the lemmas we utilise in the proof of
Theorem 1.

Lemma 1. From Assumption 1 and 4, L(w) is L-smooth and
µ-strongly convex. Then ∀w1, w2 ∈ W , one has

⟨∇L(w1)−∇L(w2),w1 −w2⟩ ≥
Lµ

L+ µ
∥w1 −w2∥22

+
1

L+ µ
∥∇L(w1)−∇L(w2)∥22 (15)

Lemma 2. The difference between m(w) and ∇L(w) is
bounded in every iteration:

∥m(w)−∇L(w)∥2 ≤ ∥m0(w)−∇L(w)∥2 +
√
N∆1 (16)

where:

∆1 =
M(ϖ(M − 1) + 2E√

Mδ
)

Wa(M−1)(κN+W)
(ηN+W)(κN+Wa) + 1

E = sup

{
37

√
2λ(M + 4)

25(M − 1)
median

i

{
|wt

i,n − B̂nx
t
i,n − Ân|

}}
and

m0(w) := median
i
{mi(w)}

1) Proof of Lemma 1: Let g(w) = L(w)− ς
2 ∥w∥

2
2. Base

on the assumption 4, we have g(w) is (L−ς)-strongly convex.
from [23] 3.6, we have

⟨∇L(w1)−∇L(w2),w1 −w2⟩ ≥
1

L
∥∇L(w1)−∇L(w2)∥22

(17)

Hence,

⟨∇g(w1)−∇g(w2),w1 −w2⟩ ≥
1

L− ς
∥∇g(w1)−∇g(w2)∥22

(18)

Now We have

⟨∇
(
L(w1)−

ς

2
∥w1∥22

)
−∇

(
L(w2)−

ς

2
∥w2∥22

)
,w1 −w2⟩

≥ 1

L+ µ

∥∥∥∇(
L(w1)−

ς

2
∥w1∥22

)
−∇

(
L(w2)−

ς

2
∥w2∥22

)∥∥∥2

2

(19)

And therefore

⟨∇L(w1)−∇L(w2),w1 −w2⟩ − ⟨ςw1 − ςw2,w1 −w2⟩

≥ 1

L− ς
∥(∇L(w1)−∇L(w2))− (ςw1 − ςw2)∥22 (20)

Refer to Assumption 1, we obtain

⟨∇L(w1)−∇L(w2),w1 −w2⟩ ≥
Lς

L− ς
∥w1 −w2∥22

− 2ς

L− ς
⟨∇L(w1)−∇L(w2),w1 −w2⟩

+
1

L− ς
∥∇L(w1)−∇L(w2)∥22

≥ − Lς

L− ς
∥w1 −w2∥22 +

1

L− ς
∥∇L(w1)−∇L(w2)∥22 (21)

Let ς = −µ, then we conclude the proof of Lemma 1.

2) Proof of Lemma 2: We have the following equation:

∥m(w)−∇L(w)∥2 ≤ ∥m(w)−m0(w)∥2
+ ∥m0(w)−∇L(w)∥2 (22)

from [16] inequality 18, we know ∀i, n,∃E > 0

sup |ei,n| ≤
E√
Mδ

Where

E = sup

{
37

√
2λ(M + 4)

25(M − 1)
median

i

{
|wt

i,n − B̂nx
t
i,n − Ân|

}}
and the dimension of w is N . Hence the distance between the
two aggregation functions satisfies

∥m(w)−m0(w)∥2 ≤
√
N

∥∥∥∥∥
M∑
i=1

R̄i

(
B̂i (M − 1) +

2E√
Mδ

)∥∥∥∥∥
2

(23)

Based on Equation 12

s exp(−cs)∑s
j=0 exp(−cj)

· Wa

ηN +W
≤ R̃t

i (24)

R̃t
i ≤

s∑s
j=0 exp(−cj)

· κN +Wa

κN +W
(25)

so we have

R̄i =
R̃t

i∑M
i=1 R̃

t
i

≤ 1
Wa(M−1)(κN+W)
(ηN+W)(κN+Wa)

+ 1
(26)

Due to our Aggregation Algorithm

B̂n = median
i

(
median

i ̸=j

wj,n − wi,n

xj,n − xi,n

)
≤ ϖ (27)

Therefore, we have∥∥∥∥∥
M∑
i=1

R̄i

(
B̂i (M − 1) +

2E√
Mδ

)∥∥∥∥∥
2

≤
M(ϖ(M − 1) + 2E√

Mδ
)

Wa(M−1)(κN+W)
(ηN+W)(κN+Wa)

+ 1

= ∆1 (28)

Hence, we proof Lemma 2.

3) Proof of Theorem 1: We first consider a general problem
of robust estimation of a one dimensional random variable.
Suppose that there are M clients, and p percentage of them
are malicious and own adversarial data. In t iteration, we have:∥∥wt −w∗∥∥

2
=

∥∥(wt−1 − rm(wt−1)−w∗∥∥
2

≤
∥∥wt−1 − r∇L(wt−1)−w∗∥∥

2︸ ︷︷ ︸
A

+ r
∥∥m(wt−1)−∇L(wt−1)

∥∥
2︸ ︷︷ ︸

B

(29)

We bound part A first. We have∥∥wt−1 − r∇L(wt−1)−w∗∥∥2

2
=

∥∥wt−1 −w∗∥∥2

2

+ r2
∥∥∇L(wt−1)

∥∥2

2
− 2r

〈
∇L(wt−1),wt−1 −w∗〉 (30)

16

Under the Assumption 4 and Lemma 1, we have〈
∇L(wt−1),wt−1 −w∗〉 ≥ Lµ

L+ µ

∥∥wt−1 −w∗∥∥2

2

+
1

L+ µ

∥∥∇L(wt−1)
∥∥2

2
(31)

Then we combine inequalities 31 to equation 30∥∥wt−1 − r∇L(wt−1)−w∗∥∥2

2
≤ (1− 2r

Lµ

L+ µ
)
∥∥wt−1 −w∗∥∥2

2

+ (r2 − 2r

L+ µ
)
∥∥∇L(wt−1)

∥∥2

2

(32)

From Assumption 1, we can derive:∥∥∇L(wt−1)−∇L(w∗)
∥∥2

2
≤ L2

∥∥wt−1 −w∗∥∥2

2
(33)

Combining inequalities 32 and 33, we have:∥∥wt−1 − r∇L(wt−1)−w∗∥∥2

2
≤ (1− Lr)2

∥∥wt−1 −w∗∥∥2

2
(34)

Let r < 1
L , we have∥∥wt−1 − r∇L(wt−1)−w∗∥∥

2
≤ (1− Lr)

∥∥wt−1 −w∗∥∥
2

(35)

Then we turn to bound part B. Based on Lemma 2, we
know:

∥m(w)−∇L(w)∥2 ≤ ∥m0(w)−∇L(w)∥2 +
√
N∆1 (36)

Assume Assumption 1, 2, 3 and 4 holds, and ∃ϵ fulfills
inequality 13. Based on Lemma 1 in [20], with the probability
1− ξ ≥ 1− 4d

(1+Q̂MLυ)
d , we have

∥m0(w)−∇L(w)∥2 ≤
√

2

Q̂
DϵVw(

√
d log(1 + Q̂MLυ)

M(1− p)

+ C
Gw√
Q̂

+ p) + 2
√
2

1

MQ̂
= ∆2 (37)

where C = 0.4748. After obtaining the bound of part A and
B, now we have∥∥wt −w∗∥∥

2
≤ (1− Lr)

∥∥wt−1 −w∗∥∥
2︸ ︷︷ ︸

Bound A

+ r
(√

N∆1 +∆2

)
︸ ︷︷ ︸

Bound B

(38)

Hence, we can prove Theorem 1 through iterations using
the formula of a finite geometric series,∥∥wt −w∗∥∥

2
≤ (1− Lr)t

∥∥w0 −w∗∥∥
2

+
1− (1− Lr)t

Lr
r
(√

N∆1 +∆2

)
≤ (1− Lr)t

∥∥w0 −w∗∥∥
2
+

1

L

(√
N∆1 +∆2

)
(39)

B. Experimental Setting

Our simulation experiments are implemented with Pytorch
framework [28] on the cloud computing platform Google
Colaboratory Pro (Colab Pro) with access to Nvidia K80s,
T4s, P4s and P100s with 25 GB of Random Access Memory.
Table II shows the default setting in our experiments.

TABLE II: Default experimental settings

Explanation Notation Default Setting

prior probability a 0.5
non-information prior weight W 2
weight for positive observation κ 0.3
time decay parameter c 0.5
window length s 10
confidence threshold δ 0.1
value range ϖ 2
Objective Function L(·) Negative Log-likelihood Loss

Learning rate r 0.01
Batch size per client 64
The number of local iterations 10
The number of total iterations 100

C. Supplementary dataset for experiment

CIFAR-10 is a supplementary dataset assessing the robust-
ness of our reputation scheme in image datasets to poisoning
attacks. The CIFAR-10 dataset is a 32×32 colour image dataset
that includes ten classes with a total number of 50 thousand
images for training and 10 thousand images for testing. Here
we use ResNet-18 [19] model pertaining to ImageNet [25] with
20 iterations. In CIFAR-10 dataset, attackers switch the label
of “cat” images to the “dog”.

Figure 15 shows that under label flipping and backdoor
attack during the whole process, our reputation-based method
has the highest accuracy outperforming other methods and the
lowest ASR, excluding Foolsgold in CIFAR-10, yielding a
result that is similar to the one in SURL.

D. Extra Experimental Result

We evaluate the proposed defence for a varying number
of clients from 10 to 200 in the SURL dataset. Here, we
analyze the performance of the aforementioned methods for
100 clients. The results are presented in Figure 16 and Fig-
ure 17 that correspond to the average accuracy (ACC) and
attach success rate (ASR), respectively.

In the no attack scenario, we observe that our method
converges between 1.7× to 7.1× faster than all competing
state-of-the-art methods with at least as good performance (or
outperforms) compared with competing methods in terms of
classification accuracy, see Figure 16 (left). In addition, even
under the two different attacks, our method: (i) converges
between 1.6× to 3.6× faster than all competing state-of-the-
art methods, (ii) provides the same or better accuracy than
competing methods, and (iii) yields the lowest ASR compared
to all other methods.

17

Fig. 15: Average accuracy (ACC) and attack success rate (ASR) for varying percentage of attackers from 10% to 50% under
label flipping (left) and backdoor (right) attack for Reputation, FedAvg, Median, Residual-based, Median, Trimmed-Median,
FoolsGold and FLTruts in CIFAR-10 dataset.

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%

No Attack

Numbers of iterations

A
C

C

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%

Label Flipping Attack

Numbers of iterations

A
C

C

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%

Backdoor

Numbers of iterations

A
C

C

Reputation

FedAvg

Residual

Foolsgold

Median

Trimmed-mean

FLTrust

Fig. 16: Average accuracy (ACC) with no attack (left) and varying percentage of attackers from 10% to 50% under label flipping
(middle) and backdoor (right) attack for Reputation, FedAvg, Residual-based, Median, Trimmed-mean, Foolsgold, FLTrust in
SURL dataset.

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

Label Flipping Attack

Percentage of Attackers

A
S

R

10% 20% 30% 40% 50%
0%

20%

40%

60%

80%

100%

Backdoor Attack

Percentage of Attackers

A
S

R

Reputation

FedAvg

Residual

Foolsgold

Median

Trimmed-mean

FLTrust

Fig. 17: Attack success rate (ASR) for varying percentage of attackers from 10% to 50% under label flipping (left) and backdoor
(right) attack for Reputation, FedAvg, Residual-based, Median, Trimmed-mean, Foolsgold, FLTrust in SURL dataset.

18

37/72

Anexo 3: FreqyWM - Frequency Watermarking
for the New Data Economy

FreqyWM: Frequency Watermarking for the New
Data Economy

Devriş İşler1,2, Elisa Cabana3§, Alvaro Garcia-Recuero4§, Georgia Koutrika5, and Nikolaos Laoutaris1

1IMDEA Networks Institute, 2UC3M, 3CUNEF University, 4FUNDITEC, 5Athena Research Center

Abstract—We present a novel technique for modulating the
appearance frequency of a few tokens within a dataset for
encoding an invisible watermark that can be used to protect
ownership rights upon data. We develop optimal as well as fast
heuristic algorithms for creating and verifying such watermarks.
We also demonstrate the robustness of our technique against
various attacks and derive analytical bounds for the false positive
probability of erroneously “detecting” a watermark on a dataset
that does not carry it. Our technique is applicable to both single
dimensional and multidimensional datasets, is independent of
token type, allows for a fine control of the introduced distortion,
and can be used in a variety of use cases that involve buying and
selling data in contemporary data marketplaces.

Index Terms—Intellectual property, digital rights management,
watermarking, ownership rights, data economy

I. INTRODUCTION

Data-driven decision making powered by Machine Learning
(ML) algorithms is changing how society and the economy
work. ML is driving up the demand for data in what has
been called the fourth industrial revolution. To satisfy this
demand, several data marketplaces (DMs),which are mediation
platforms aiming to connect the two primary stakeholders of
the data value chain, namely the data providers/sellers and the
data buyers [1], have appeared in the last few years.
The problems: Unfortunately, as with all digital assets, being
able to copy/store/transmit datasets with close to zero cost
makes creating illegal copies very easy. Even worse, unlike
media content and software, the issue of ownership is less
obvious when it comes to datasets. Any movie, song, e-
book, or software can usually be attributed to a director,
musician, author, or company, respectively, but this is hard to
do for large datasets. These large datasets in data economy are
traded in a wholesale manner that involves large numbers of
tuples/rows. Consider an anonymised mobility dataset logging
the movement of people in a city. Such a dataset may have
been produced by collecting GPS readings from the smart-
phones of individuals using a map application, or it may be
deduced by analysing cell phone traces [2] or Call Description
Records (CDRs) maintained by mobile operators. Deployment
of advanced privacy enhancing technologies (PETs) such as
multiparty computation [3], (fully) homomorphic encryption
[4], functional encryption [5], and trusted execution environ-
ments [6] can protect data from leaking in the first place and
allow (pre-agreed) computations on data without hampering
the functioning of the data-driven economy, e.g., private set

§Work done while the author was affiliated with IMDEA Networks Institute.

computation [7], encrypted databases [8], secure computation
[9], secure data aggregation [10], and verifiable databases
[11]. However, most such approaches face serious scalability
challenges that hamper their deployment in real-world use-
cases. An alternative to deploying PETs solutions, is to rely
on purely legal tools and terms and conditions to protect data
ownership in the context of the new data economy [12]. In fact,
most DMs do exactly that – trade plaintext versions of entire
data [1, 13, 14] assuming that the different parties will abide
to pre-agreed terms and conditions. With weak to nonexistent
ownership guarantees by technical means, it is difficult to
imagine that the data economy will ever flourish and reach
its projected potential [15]. Indeed, any sold copy of a dataset
can be ‘pirated’ by a buyer-turned-seller that can then resell
the same dataset in a DM thereby undercutting the rightful
owner and rendering its investment useless.

Watermarking is a well-known technique for protecting
ownership upon copying and unauthorized distribution, ini-
tially proposed for protecting digital media [16, 17] and soft-
ware [18]. Watermarking techniques for datasets [19, 20, 21]
and machine learning models [22] have been proposed re-
cently. Watermarking generally consists of two algorithms:
generation (or embedding) and detection. The generation
allows an owner to embed an invisible (or visible) watermark
into their data using a high entropy (watermarking) secret
and produces a watermarked version of the data introducing
tolerable distortion without degrading the data utility. During
the detection algorithm, the owner proves its ownership on the
suspected data (even if it is modified) using the same water-
marking secret generated during the watermark generation. If
the result of the detection is 1 (or accept), the owner can use
it to prove their ownership on the (suspected) watermarked
data. A watermarking scheme is assumed to be secure against
the guess attack (where an attacker tries to expose the water-
marking secret) and robust against (un)intentional alterations/-
modifications (i.e., a watermark should be still detectable even
under attacks such as [20, 23, 24, 25, 26, 27, 28]).
Limitations of existing watermarking techniques: Water-
marking techniques, depending on the nature of their appli-
cation, may have very different objectives, e.g., numerical
database watermarking controlling the distortion on mean
and standard deviation [21], reversible watermarking allowing
owners to reconstruct the original data [29], watermarking
text datasets preserving the meaning of a text [30] and/or
the frequencies of the words [31], categorical watermarking
preserving the (predefined) categories (e.g., gender) of a

dataset [32]. All these solutions focus on a specific data
type in a specific domain [23, 33]. Another limitation of
theirs relates to the level of control they offer to the user
in terms of controlling the distortion introduced upon the
original data due to the watermark. There are, for example,
techniques that maintain the mean and the standard deviation
of a numerical field [20, 34, 35] but, as we will show
later, this can lead to arbitrary large distortion between the
original and the watermarked data when considering the entire
distribution of values that goes beyond the mean and the
standard deviation. To address these limitations, we introduce a
novel watermarking technique that can be implemented over a
wide range of data types and structures (with some constraints
that will be explained later) while giving the data owner very
precise control over the introduced distortion.
A novel watermarking technique for data: In this paper, we
present a novel Frequency Watermarking technique, henceforth
FreqyWM, 1 for hiding a secret within a dataset in a manner
that makes the said secret indistinguishable from the data
that it protects. The main idea behind FreqyWM is to modify
slightly the appearance frequency of existing tokens within a
dataset in order to create a secret in the form of a complex
relationship between the frequencies of different tokens. By
making this relationship complex enough, we can reduce the
probability that it appeared by chance close to zero. Therefore,
by revealing knowledge of such secret relationship, a party
can claim ownership over a dataset because the only practical
way of knowing such a secret is to have inserted it in the
data in the first place. A token may be a word, a database
record, a URL, or any repeating value within a structured or
semi-structured commercial dataset. Our secret is created by
first selecting a number of token pairs. Then, for each pair, we
slightly modulate the frequency counts of its tokens in order to
make their difference yield zero under modulo N arithmetic.
This can be easily done by adding or removing some instances
of one, the other, or both tokens. By increasing the number of
selected pairs we can make our watermark more resistant to
attacks, as well as less likely to have appeared by chance.

FreqyWM can achieve several things. First and foremost, by
revealing knowledge of the secret encoded by the watermark, a
data seller can prove rightful ownership of a dataset to a third
party, such as a DM. This can be used to distinguish a rightful
owner from a pirate that may attempt to monetize a pirated
dataset in a DM. If the DM, or the rightful owner detects
such an event, the dataset can be removed and the pirate be
banned. This would mimic what web-sites like YouTube do to
protect copyrighted content. Detecting the presence of pirated
copies can be achieved using content similarity [36], locality
sensitive hashing [37, 38] and even hashing similarity [39] that
go beyond the scope of watermarking.

In addition to proving ownership, our watermarking tech-
nique can also reveal who may have leaked (copied/pirated)
a dataset in the first place. A dataset seller or a DM may
create a different watermark for every buyer and in addition to

1Freqy pronounced as freaky.

encoding it into the data, store also a description of it in some
immutable index (e.g., a blockchain). Then, if an unauthorized
copy of the dataset is found at a latter point, the culprit can
be identified by looking up its watermark against this index.
Our major contributions are as follows:
• Our first contribution is the idea of using the appearance fre-
quency of tokens to encode invisible watermarks upon datasets
traded in DMs. We establish a family of such watermarks
using frequency pairs and modulo arithmetic and prove that
creating an optimal FreqyWM reduces to solving a Maximum
Weighted Matching (MWM) problem [40, 41] combined with
a polynomial special version of the 0/1 Knapsack problem [42]
involving items of equal value but different weights.
•We extend frequency-based watermarking to make it resilient
against a series of attacks. In particular, we protect our
technique against a Guess Attack attempting to identify our
watermarked pairs and secrets to impersonate the rightful
owner. We make such an attack computationally hard by intro-
ducing a high-entropy secret while generating the watermark.
We also protect against a Re-watermarking Attack mounted
by having a pirate inject its own watermark upon an already
watermarked dataset, and then present the former as a false
proof of ownership. We thwart such an attack by describing a
simple protocol capable of ordering chronologically multiple
watermarks that may be carried by different versions of the
same dataset. We protect against a Destroy Attack attempting
to destroy our watermark by changing the frequency of differ-
ent tokens in the dataset. By relaxing our modulo arithmetic
rule used during the verification of a particular watermark pair,
as well as the percentage of pairs to be detected before the
entire watermark is verified (accepted), we oblige the attacker
to effectively also destroy the actual data in the process of
destroying the watermark. Finally, we show that our technique
is robust to a Sampling Attack in which the attacker attempts
to pirate only a random sample of the watermarked data.
• Our final contribution is an extensive performance evaluation
study aiming to explain the impact of the main parameters of
FreqyWM on major performance metrics under different attack
scenarios using synthetic and real world datasets.
The main findings of our evaluation are as follows:
• We show that as long as there exists sufficient variation
in the frequencies of different tokens, FreqyWM can encode
robust watermarks with minimal distortion on the initial data.
Our technique does not apply to uniform token appearance
frequencies, because in this case there does not exist sufficient
gap between different frequencies for encoding a watermark.
• Regarding the false positive probability, i.e., “detecting” a
watermark on a dataset that does not carry it, our analytical
bounds (in the form of closed form expressions) show that it
quickly goes to zero as we increase the number of pairs.
• We demonstrate that a Guess Attack has negligible prob-
ability of success, thereby making it impossible for almost
all practical cases. On the up side, the rightful owner or any
party, that is given the watermarking secret for verifying the
watermark, can do that very fast in linear time complexity.

• Regarding Sampling Attacks, we show that with the excep-
tion of very small samples, our detection algorithm is capable
of detecting our watermark. Achieving this requires using the
relaxed detection algorithm that trades robustness to attacks
with false positives. For example, on a sample of 20% and
with thresholds that impose tiny false positive probability, the
detection probability exceeds 90%.
• In terms of Destroy Attacks, we show that a watermark that
imposes (costs) a tiny 0.0002% distortion on the original data,
remains detectable even under attacks that add random noise
that imposes a 90% modification.
• Compared to existing solutions from the literature [30, 35]
that are applicable only to numerical data and preserve only
the mean value of the watermarked data, FreqyWM allows a
data owner to control the exact amount of distortion introduced
by the watermark in terms of cosine or other similarity metrics
which, under [30, 35] may become unbounded. For example,
a FreqyWM watermark that imposes only 0.0002% distortion
in terms of cosine similarity, is stronger than watermarks
from [35] and [30] that impose 46.72% and 4% distortion,
respectively under the same metric.

II. RELATED WORK

Database watermarking is the closest type of watermarking
to our work. There are of course other types of watermarking
and fingerprinting (when an owner generates a unique water-
mark for each intended party, e.g., buyers/data marketplaces),
for example, for sequential [43] and genomic datasets [44].
However, as they focus on specialized types of data, we do
not go into more details about them. Survey papers such
as [23, 33, 45, 46] compare database watermarking techniques
in terms of verifiability, distortion, supported data types, and
other aspects. Many of these solutions are applicable only
to numerical data and thus cannot be applied to a range of
commercial datasets, e.g., to web-browsing click-streams.

The first known watermarking technique for relational data
is a numerical database watermarking approach [20]. The
watermark information is normally embedded in the Least
Significant Bit (LSB) of features of relational databases to
minimize distortion. Other numerical database watermarking
solutions introduce distortion by considering the statistics of
numeric values [34, 35, 47, 48, 49]. The proposed solutions
in [20, 35] focus on keeping the change at minimum (i.e.,
median and standard deviation). However, numerical database
watermarking unfortunately cannot be applied to datasets
composed of string and numerical values (e.g., CDRs, web-
browsing history) that we handle in our work.

Distortion-free database watermarking schemes have also
been proposed [50, 51] that introduce fake tuples or columns
in the original database. The fake tuples or columns are created
based on a watermark secret by computing a secret function
which makes watermarking visible and easy to remove. How-
ever, an attacker can remove the watermark with minimum
computational power, making these approaches inapplicable
to our case. Reversible watermarking allows owners to recon-
struct the original data used for watermarking on the top of

watermark verification [29, 30, 49, 52, 53, 54, 55, 56, 57].
They have similar properties as other relational watermarking
techniques (e.g., private key based, robust, introducing distor-
tion).

Categorical watermarking [32] is another watermarking
approach that replaces tokens in a dataset with another token
in the same category. However, this causes an undesired
distortion and requires predefined categories (e.g., gender,
clothing size) in the data. Consequently, its applicability on
datasets consisting of different data types is limited. Text
watermarking [30, 31] is for text files where it changes a token
(e.g., by replacing a word with another similar word) trying to
preserve the meaning of a text [30] and/or the frequencies of
the words [31]. However, assume the dataset is a list of URLs
visited by the owner, then this (insecure) change/replacement
may invalidate a token (e.g., causing an invalid URL).

In the context of datasets in our use case, while prior
works try to minimize the amount of distortion on median,
average, or first moments of the distribution of a feature, the
owner can limit the exact distortion between the original and
the watermarked dataset as reflected by distance metrics that
capture the shape of the entire distribution of a feature. Our
results in Section IV-D have shown that the latter can deviate
arbitrarily if an owner tries to control only the first most
important moments.

III. FREQUENCY-BASED WATERMARKING

In this section we provide an overview of FreqyWM and the
notations used throughout the paper in Table I.

Do The original data to watermark.
Dw Watermarked (data) version of Do.
tki ith token.
fo
i Frequency of ith token in Do.

fw
i Frequency of ith token in Dw .
R A high entropy secret.

Lwm A list of chosen token pairs for watermarking.
Lsc A list of secrets required for watermark detection.
Le A list of eligible token pairs for watermarking.
k Threshold for detecting a watermark.
t Threshold to accept a pair as watermarked.
b A budget threshold for distortion that watermarking can introduce.

TABLE I: Notation.

Running Example. To provide the intuition behind our
watermarking approach, assume a scenario where an owner
holds a real click-stream dataset consisting of visited URLs
(e.g., the dataset by [58]). Such datasets are desired by modern
data analytic-based applications [59] where their frequency
histograms (e.g., the number of clicks/visits, popularity of
likes in social networks) are used as an essential source of
information. For instance, assuming the appearance frequen-
cies (histogram) visualized in Figure 1 via a tabular form,
the most frequent token is youtube.com, the second one
is facebook.com, and so forth. After watermarking, it is
important that the ranking of the tokens based on the frequency
shall not change while the frequency appearances can be
modified. For instance youtube.com shall be the most fre-
quent URL (token) visited in the watermarked dataset. Another
important distortion metric on the histogram is similarity. It

is important that owners shall have control over the change in
similarity. Since the similarity metric can be varied depending
on the application that a dataset will be used, owners can
assign a budget to determine the minimum similarity desired
on the frequency distribution after watermarking. Based on
the above, we derive two natural constraints on the data
utility to allow an owner to control distortion, without limiting
watermarking to a specific data type:
• Ranking Constraint: Watermarking should preserve the rank-
ing of token frequency distribution (histogram). Preservation
of ranking does not of course imply that frequencies of individ-
ual tokens need to remain intact. • Similarity Constraint: The
similarity between original and watermarked frequency distri-
butions (histograms) should not be any less than (100− b)%
where b is a budget. Input b is determined by the owner to
keep distortion due to watermark generation within b. 2

To satisfy these constraints and overcome the shortcoming
of existing watermarking techniques, we introduce a new
private-key based watermarking scheme, FreqyWM, that is
blind (does not require the original data), primary-key free
(does not need attributes that uniquely specify a tuple in a
relation in a dataset), robust, and secure against guess, sam-
pling, destroy, and false-claim attacks with a high utility and
a good trade-off between the complexity of the transformation
and algorithmic efficiency of the solution.

A. Overview of our Approach

FreqyWM consists of two main algorithms: the water-
mark generation algorithm, WMGenerate, and the water-
mark detection algorithm, WMDetect. WMGenerate gen-
erates watermarked data based on a budget b capturing how
much the watermarked data may differ from the original
one, e.g., in terms of cosine (or other) similarity metrics of
their corresponding token frequency distributions. By calling
WMGenerate, the owner creates a watermarked version of
their data consisting of tokens such that ownership can be
proved. WMDetect detects if a suspected dataset holds the
watermark of the owner using the owner secrets produced by
WMGenerate and two thresholds (k and t). If WMDetect
outputs accept/verified, this evidence would prove that the
owner can claim ownership of the watermark and thus the data.
By nature, WMDetect can be computed as many times as
desired in private while it can be computed only once in public,
because it would mean that the potential data owner shall
reveal the secret leading to such watermark to the public (or
whomever must verify it, e.g., a judging third party). As part
of our future work, we are also looking at public verifiability
without revealing the private key (Section VII).

We describe the general idea behind FreqyWM, illustrated
in Figure 1. We use our running example. Of course, our
technique is general and can be applied to any repeating token
beyond just URLs, as we explain in Section IV-C.
Watermark Generation. Assume that the data owner holding

2Although in our experiments we use cosine similarity, any similarity
metrics can be deployed without any loss of security and change in FreqyWM.

a list of URLs visited creates a dataset Do using the domain
of each URL in the list as a token and sets a budget b for the
similarity constraint. WMGenerate has the following steps:
• Histogram Generation. Since FreqyWM aims to preserve the
appearance frequency of tokens, it first creates a histogram of
the original dataset Do such that it sorts all unique tokens in
descending order of their frequency (e.g., YouTube is the most
visited, Facebook is the second, and so on).
• Generation of Eligible Tokens. FreqyWM cannot modify
the frequencies randomly because of the ranking constraint.
Therefore, it identifies a list Le of eligible pairs of tokens that
are candidates to be watermarked using some secret R.
• Optimal Selection. With the identification of eligible pairs,
FreqyWM ensures that the ranking is preserved after wa-
termarking. However, the similarity constraint is yet to be
satisfied. To keep the similarity at least at (100 − b)%,
FreqyWM selects pairs of tokens from eligible pairs for water-
marking, denoted by Lwm, based on the budget constraint b.
For this purpose, FreqyWM benefits from solving two well-
known problems: Maximum Weight Matching (MWM) and
Equally Valued 0/1 Knapsack problem (QKP). To do so,
eligible pairs are converted to a graph representation where
vertices represent a token, and an edge represents a pair.
FreqyWM applies Maximum Weight Matching to the graph
representation (discussed in detail later). By applying MWM,
FreqyWM selects the pairs from eligible pairs requiring the
minimum change in total; however, it does not necessarily
mean that the similarity between the original histogram and
watermarked histogram will be at least (100−b)%. To choose
another set of pairs satisfying the Ranking Constraint from the
pairs derived after MWM, an Equally Valued 0/1 Knapsack
problem needs to be solved. The more the token pairs are
selected to watermark, the more robust FreqyWM is, since the
number of tokens to attack (e.g., remove/identify) increases.
To fulfill the budget b, QKP selects a maximum number of
pairs such that the similarity between the original frequency
histogram and the watermarked one is at least (100− b)%.
• Frequency Modification. Until now, FreqyWM determines
the final pairs of tokens for watermarking but frequency
appearances are yet to be modified to create the watermarked
histogram. Therefore, FreqyWM modifies the frequencies of
the selected tokens where the frequencies of a pair of tokens
would be equal to 0 (as a watermark embedding rule) in
some modulo that is calculated based on secrets and tokens
in the pair. To make it more comprehensible and show how
the modifications occur, let us assume that the frequencies of
a chosen pair, e.g., youtube.com and instagram.com,
are 1098 and 537, respectively. Assume also that a modulo
value, say 129, is computed based on the secrets and the
tokens (e.g., youtube.com and instagram.com). The
difference between the two frequencies in modulo 129 is 45.
To set the difference to 0, we need to change the appearance
frequencies for Youtube and Instagram in the dataset. 45 is
divided (by 2) as 23 (by ceiling) and 22 (by flooring). The
new frequencies of youtube.com and instagram.com
need to become 1098 − 23 = 1075 and 537 + 22 = 559

Watermarked

 youtube.com\...
 google.com\...

 instagram.com\..

 bbc.com\…

 cnn.com\...

 elpais.com\...
O
ri
gi
na

l
D
at

a

URL Frequency
 Youtube 1098
 Facebook 980
 Google 674
 Instagram 537
 BBC 64
 CNN 53
 El Pais 53

URL Frequency
 Youtube 1075
 Facebook 981
 Google 673
 Instagram 559
 BBC 65
 CNN 53
 El Pais 53

Original

1. Histogram
Generation

2. Eligible
Tokens

3. Optimal
Selection

Fi
na

l T
ok

en
Se

le
ct

io
n

3.1 Graph
Representation

3.
2

M
W

M

Budget

3.
3

Q
KP4. Frequency

Modification
-23

-1
+1

+22

+1

0

W
at

er
m
ar

ke
d

D
at

a 5. Data
Transformation

 youtube.com\...
 youtube.com\...
 google.com\...
 instagram.com\..
 bbc.com\…

 cnn.com\...
 elpais.com\... Watermark Generation Watermark Detection

Watermarked
Data

Detection

: Watermarking Secrets

: Thresholds for detection

MWM: Maximum Weight Matching

QKP : Equally Valued 0/1 Knapsack

Fig. 1: FreqyWM illustrated based on a (Top Level Domain, TLD) URL dataset. URLs chosen as a pair for watermarking are represented
with the same colored frequencies (e.g., Youtube and Instagram) while the ones not selected are colored black (e.g., CNN).

such that (1075 − 559) mod 129 ≡ 0. We can do that
by removing 23 instances of Youtube from the dataset, and
adding 22 more instances of Instagram. However, when the
remainder (i.e., (1098 − 537) mod 21 ≡ 16) is greater than
half of the modulo, we add the modulo result calculated as
(⌈(1098− 537)÷ 21⌉)× (1098− 537) to the difference. This
way, we never have to eliminate remainders that exceed half
of the modulo. As it will be evident in the next section, this
observation enables us to determine eligible tokens.
• Data Transformation. FreqyWM adds/removes tokens based
on the frequencies and produces a watermarked dataset Dw.
Watermark Detection. An owner wishes to verify if a
(watermarked) dataset D′

w (a modified version of Dw) is
watermarked by using the secrets stored from the watermark
generation. To determine the confidence level in the detection
(e.g., the minimum number of detected watermarked tokens),
the owner provides some threshold values (k and t). With the
watermarking secret and the thresholds, the detection returns
accept/verified or reject.

Algorithm I: Watermark Generation

Input: Do, b
Output: Dw, Lsc

Dhist
o = Preprocess(Do)

R← {0, 1}λ , z ← Z+

foreach {tki, tkj}i̸=j ∈ Do do
sij = H(tki||H(R||tkj)) mod z

end
Le ← Eligible(Dhist

o , {sij})
Lwm ← OptMatch(Dhist

o , Le, {sij}, b)
foreach {tki, tkj} ∈ Lwm do

Dhist
o .Update(fw

i , fw
j , sij)

end
Dw ← Create(Dhist

o , Do)
Lsc = {Lwm, R, z}
Result: Dw, Lsc = {Lwm, R, z}

B. Detailed Description of FreqyWM
1) Watermark Generation: The data owner holds the orig-

inal data Do and defines a budget b that decides how much
distortion a watermark can introduce. For comprehensibility,
assume that Do is a single-dimensional dataset, e.g., a dataset

with one attribute (see Section IV-C for how to apply Fre-
qyWM to multi-dimensional datasets). Do consists of repeating
values called tokens that can be of any data type, which enables
FreqyWM to be data-type agnostic. The goal of watermarking
is to generate the optimal watermark, i.e., with the largest
number of watermarked pairs within the given budget b.

The generation algorithm (Algorithm I) follows these steps:
Histogram Generation: It pre-processes Do to generate a
histogram Dhist

o = Preprocess(Do). Dhist
o consists of a set

of tokens, {tk0, . . . , tk|Dhist
o |} (e.g., tk0 =youtube.com)

where each tki has an (original) appearance frequency fo
i

(e.g., there are 1098 YouTube visits). The histogram Dhist
o

is sorted in a descending order of frequency. To keep the
distortion introduced by the watermark at minimum (e.g., after
watermarking, YouTube is still the most visited, followed by
Facebook, although their frequencies may have changed), we
calculate two boundaries for each token tki: an upper bound-
ary ui and a lower boundary li. The boundaries allow us to
determine how much change we can introduce to the token and
whether a token pair is eligible as explained later. Naturally,
for the token with the highest frequency in the histogram, it
is u0 = ∞ because we can increase the frequency of tk0 as
much as we want, while the lower boundary of the last token,
tk|Dhist

o |−1, is set to its frequency as l|Dhist
o |−1 = f|Dhist

o |−1

because we can remove at so many appearances. For the rest
of the boundary calculations of each token tki, ui is defined
as the difference between fo

(i−1) and fo
i , while li is assigned

as fo
i − fo

(i+1). Note that once the boundaries are set, they
remain same until frequency modification.3

Generation of Eligible Tokens: In cryptography, λ ∈ N is a
security parameter, i.e., a variable measuring the probability
with which an adversary can break a cryptographic scheme
[60]. In other words, λ provides a way of measuring how
difficult it is for an adversary to break a cryptographic scheme.
FreqyWM requires randomization to be secure by ensuring
that an attacker has only negligible advantage to recover the
watermark and create collision for false claim (e.g., coming
up with another watermarking secret which returns accept on

3The frequencies of some tokens may have high importance. An owner can
filter the dataset and exclude them from watermarking.

data not watermarked by it). Thus, we choose a hash function
to overcome the collision. In detail, a hash function H (chosen
from a family of such functions) is a deterministic function
from an arbitrary size input to a fixed size output, denoted
H : {0, 1}∗ → {0, 1}λ. The hash function [60] is collision
resistant if it is hard to find two different inputs m0 ̸= m1

that hash to the same output H(m0) = H(m1).
Based on the above, to determine token pairs for watermark-

ing, FreqyWM first generates a high entropy random number,
i.e., secret, R ← {0, 1}λ and an integer z ∈ Z+. Then,
it uses R and z to compute sij values for modulo opera-
tion as: sij = H(tki||H(R||tkj)) mod z, where || denotes
concatenation. A set Le of all eligible pairs is generated by
an algorithm Eligible based on given pairs {tki, tkj} and
corresponding sij values as Le ← Eligible(Dhist

o , {sij}) .
A pair is accepted as eligible if it satisfies that the boundaries
of each token in the pair are at least ⌈sij/2⌉ where sij ≥ 2. sij
cannot be 0 or 1 because of modulo operation since modulo
0 is undefined and modulo 1 is 0. Note that the size of Le

is bounded by [0,
(|Dhist

o |
2

)
] where 0 means that there is no

eligible pair while
(|Dhist

o |
2

)
means that all the possible pairs

of tokens are eligible. After the eligible pairs are constituted,
the boundary check is not necessary anymore since whichever
set of pairs (that does not have a common token among) is
chosen, the ranking will be preserved.
Optimal Selection: The eligible pairs are defined by ensuring
the ranking constraint. However, to determine which subset
of eligible pairs shall be selected such that chosen optimal
number of pairs of tokens, denoted by a set Lwm, respect the
budget constraint, it runs optimal matching algorithm from
the eligible pairs Le using the frequencies and sij values as
Lwm ← OptMatch(Dhist

o , Le, {sij}, b). In Section III-B2,
we show that for our optimal selection solution, we acutely
reduce our problem to Maximum Weight Matching (MWM)
and Equally Valued 0/1 Knapsack problem (QKP) problems
to solve. We also devise two heuristics: greedy and random.
Frequency Modification: Based on Lwm, the algorithm cre-
ates new frequencies of tokens chosen from the optimal
matching algorithm (fw

i −fw
j) mod sij ≡ 0. This, of course,

changes the boundaries of tokens; however, we do not need
to update the boundaries as they are not needed anymore.
Data Transformation: It generates or removes tokens based
on new frequencies. Note that the position of where to add
tokens is important for security of FreqyWM against guess
attack. Therefore, new tokens should be added in random
positions (see Section IV-C for more discussion). As a final
step, it returns the list of tokens Dw and stores Lwm, z value,
and the random value R as a list Lsc.

2) Optimal and Heuristic Approaches : Given that all
watermarked pairs have equal value in terms of proving
ownership of the data, an optimal watermark is just a wa-
termark of maximum size in terms of watermarked pairs,
within the defined constraints (similarity and ranking). Op-
timal Matching. Let us now define our optimal watermarking.
Let G = {V,E} be a connected undirected graph which is

the representation of frequencies driven from eligible pairs
Le. V = {v1, v2, . . . , v|V |} where vi represents tki and
E = {e1, e2, . . . , e|E|} where e(vi, vj) is the edge between
vi and vj . The weight of an edge e(vi, vj), w(ei), is equal to
T −((fo

i −fo
j) mod sij) where T is a big value (e.g., T > C

where C is the highest difference between two frequencies in
the eligible pairs). Then, our optimal watermarking problem
reduces to finding the maximum number of edges (pairs) such
that no edge has a common vertex and b is not exceeded.

Definition 1 (Optimal Watermarking). Let
OptWM(G(V,E), b) be the optimal watermarking with
a budget of b among an eligible set of items Le represented
as a connected undirected graph G(V,E). The optimal
watermarking produces the maximum number of edges (pairs)
while not exceeding the budget b defined below:

MAX |Mw|, Mw = {e1, ..., e|M|} s.t. sim(Dhist
o , Dhist

w) ≥ (100−b)

where Mw denotes the chosen pairs for watermarking.

This problem is reduced to two well-known problems
with polynomial time solutions: Maximum Weight Matching
(MWM) and Equally Valued 0/1 Knapsack problem (QKP)
(which we have a special case where all values are equal).
While the general 0/1 Knapsack problem is known to be NP-
Hard [42], this special equally valued 0/1 Knapsack problem
would have a polynomial time (greedy) solution. Hence, our
optimal pairing problem is reduced and solved as follows:
• Find the maximum weight matching M = e1, e2, . . . , e|M |
as M = MWM(G(V,E)). Notice that M includes the edges
such that the sum gives the maximum weight. It refers to
minimum weight for us since the weights are defined as
T − (fi − fj mod sij) which makes the highest frequency
difference have the smallest weight and the smallest one have
the highest weight. With this conversion, we identify the edges
distorting the histogram minimally.
• After finding the edges via MWM, we have one more
constraint which is the budget b. The matching algorithm has
to return the maximum number of matchings for which the
distortion (e.g., based on cosine similarity) does not exceed b
which can be solved via QKP where the value of each item is
1, and the weight is recomputed as T −w(ei). Recomputation
is necessary because for the QKP we want to add as many
items as possible that will be bounded by b. Therefore, it
finds the set of edges Lwm in M such that the selected
edges do not exceed the budget b by employing the QKP as
Lwm = QKP (M, b) where Lwm = e1, e2, . . . , e|Lwm| and
value of each ei is 1 (val(ei) = 1). Showing the optimality
of the resulting watermark according to Definition 1 can be
proven via proof-by-contradiction. In a nutshell, if our solution
is not optimal, it means that one of the solutions produced
by MWM and QKP cannot be optimal. However, since
MWM and QKP are both assumed optimal, this contradicts
our statement and thus our solution is optimal.

Heuristic Matching Algorithms. We define two heuristic
algorithms: 1) greedy; and 2) random. In the greedy algorithm,
all the eligible token pairs are sorted in an ascending order by
their remainders as rmij ≡ (fo

i −fo
j) mod sij . The algorithm

starts selecting a pair respectively for watermarking where b
would not be exceeded when it is chosen (i.e., comparing
the similarities of original and watermark histograms). This
continues until b is exhausted or there is no more item to
visit. The random matching algorithm follows the same steps
as the greedy algorithm except it does not sort the eligible
pairs but rather selects a pair randomly from Le.

3) Watermark Detection: In detection, the data owner
wishes to know if there is a watermark of its in a token
dataset D′

w to claim ownership. The owner holds its secret
list Lsc = {Lwm, R, z} where Lwm is the list of watermarked
token pairs, R is the high entropy value, and z is the (modulo)
integer, all generated by the watermark generation, along with
two thresholds: (1) t, a threshold to decide if a certain pair is
watermarked; and (2) k, the minimum number of watermarked
pairs required to conclude whether D′

w is a watermarked
dataset. How to set t and k depends on the robustness an
owner wants (see Sections III-B4 and IV-A2). If the owner
wants to prove ownership to a third party, it has to reveal
its secrets to that party. This causes to prove the ownership
once in public (see Section V-D). Our watermark detection
algorithm (Algorithm II) proceeds as follows:
(1) It builds the histogram list Dhist

w of the suspected dataset
D′

w as in the watermark generation algorithm. The algorithm
does not calculate the boundaries, just the token frequencies.
(2) For each token pair {tki, tkj} in Lwm, if the pair ex-
ists in Dhist

w , the algorithm generates sij values as sij =
H(tki||H(R||tkj)) mod z.
(3) Then, it decides whether it will accept a given token pair
(tki, tkj), as watermarked or not by checking if the following
statement holds: (fi − fj) mod sij ≤ t.
(4) After finding which pairs are watermarked, it checks
whether their number is over the minimum number of pairs,
k, needed to conclude that D′

w is watermarked by the owner,
and returns accept (verified) or reject, accordingly.

4) Probabilistic Analysis of False Positives: We develop a
statistical bound in the form of the closed form expression
derived from Markov’s inequality theorem, to demonstrate
that the false positive probability (i.e., accepting a dataset as
watermarked when it is not) goes to zero if we increase the
minimum number of pairs k that has to be accepted, or if
we decrease the threshold t to accept a pair as watermarked.
Recall that the m-th token pair {tki, tkj} ∈ Lwm is accepted
as watermarked, if (fi − fj) mod sij ≤ t. We represent
the probability that this “watermarking statement” holds as
P (Xm = 1) = pm, for m = 1, ..., n. Let us assume that
pm’s follow a Uniform[0,1] distribution. The probability
of having at least k successes in n trials can be written as
P (Sn ≥ k) =

∑n
i=k P (Sn = m). We now study the behavior

of P (Sn ≥ k) depending on the behavior of t and k by using
the Sandwich Rule and Markov’s upper bound obtained by its
inequality theorem P (Sn ≥ k) ≤ µ

k , where µ =
∑n

m=1 pm
is the mean of Sn. Our analysis shows that if we decrease t,
the probability of accepting a dataset as watermarked goes to
zero and if we increase k, it will be hard to “accept” a dataset
as watermarked. For further details, see the full version [61].

Algorithm II: Watermark Detection

Input: D′
w, Lsc = {Lwm, R, z}, k, t

Output: accept/reject
Dhist

w = Preprocess(D′
w) count = 0, result = reject

foreach {tki, tkj} ∈ Lwm do
if Found(tki, tkj , Dhist

w) then
sij = H(tki||H(R||tkj)) mod z
if (fi − fj) mod sij ≤ t then

count++
end

end
end
if count ≥ k then

result = accept
end
Result: result

IV. EXPERIMENTAL EVALUATION

All of our experimental results are produced on a standard
laptop machine with dual-core Intel Core(TM) i7 − 5600U
CPU 2.5GHz, 16.00 GB RAM, 64-bit OS, and implemented
in Python language. We deployed SHA256 as a hash function.

A. Synthetic Experiments

For our synthetic experiments, we generated synthetic
datasets using a power − law distribution [64] with different
skewness values α as [0.05, 0.2, 0.5, 0.7, 0.9, 1]. The sample
size is 1M and the number of tokens is 1K for each different
α value. When α is 0, it is a uniform distribution in which
there are no eligible tokens to watermark. When α is 1, the
original dataset Do is skewed with a very long tail with almost
equal values. In this setting, we evaluate how the parameters
(a modulo value z, a budget b, and skewness parameter α) are
affecting the number of chosen pairs for watermarking and
the performance of optimal, greedy, and random approached
in terms of number of chosen pairs.

Figure 2a shows the correlation between skewness of a
dataset α and the size of chosen pairs when budget b = 2
and modulo value z = 1031. When a dataset is almost
uniform (i.e., α = 0.05), the solutions can select very few
pairs since there are not many eligible items (i.e., the upper
and lower boundaries are not enough, in fact many of them
are 0). When α starts increasing, the differences between the
frequencies of tokens increase. Thus, the number of eligible
items increases which also affects the number of chosen pairs
under a given budget. However, at some point (i.e., α = 0.7),
the number of chosen pairs decreases due to the tail of
(histogram) frequencies becoming uniform. The same figure
shows the superior performance of the optimal solution. The
gap between optimal and the heuristics is around 20% for most
α values while the two heuristics perform similar the one with
the other (0.02% in average).

Figure 2b illustrates how the modulo value z affects the
size of chosen pairs. When we pick smaller modulo value z,
we would have a higher number of chosen pairs. The reason
is that a smaller z leads to smaller remainders sij that need
to be eliminated, thereby yielding more selected pairs within
a given budget b. When z is very small (i.e., 10), the three

(a) Effect of different skewness
parameters (α) on chosen pairs
by Optimal, Greedy, and Ran-
dom.

(b) Effect of different modulo
values (z) on chosen pairs by
Optimal, Greedy, and Random.

(c) Chosen pairs by Greedy and
Random with respect to Opti-
mal.

Fig. 2: Effects of parameters on the size of chosen pairs for watermarking.

Dataset Size Token Distinct Tokens |Le| Optimal Greedy Random Gen Detect
(sec) (sec)

Chicago Taxi [62] 9.68GB Taxi ID 6573 33308 805 770 773 182.51 0.609
eyeWnder [58] 247MB URL 11479 257 38 33 31 420.81 0.053

Adult [63] 4MB Age 73 72 21 20 17 0.03 0.001

TABLE II: Validation results on real world datasets. Dataset: Dataset used Size: The size of original dataset. Token: Definition of the
token (e.g., the name(s) of the attributes). Distinct Token: The number of distinct tokens. |Le|: The number of eligible pairs. Optimal: The
number of chosen pairs by the optimal matching. Greedy: The number of chosen pairs by the greedy matching. Random: The number of
chosen pairs by the random matching. Gen: Running time of watermark generation. Detect: Running time of watermark detection.

approaches are very close (also see Section V-A for the effect
of z in terms of security). However, when z increases, our
optimal approach selects many more pairs than greedy and
random. Figure 2c shows how the budget selection affects
the performance comparison between the heuristics and the
optimal. We set modulo value z = 1031 and use the dataset
with the skewness α = 0.7. When we increase the budget b,
the heuristics get closer to the optimal performance. This is
expected since even the optimal algorithm cannot select more
than all the eligible pairs and with a large budget even the
heuristics can approach that.

1) Limit of z: We stated that z is selected from Z+;
however, by analyzing the frequency histogram we can derive
the upper and lower boundaries. Since the minimum value
(lower bound) z can take is 2, we delve into investigation of
the upper bound of z. Note that since the token with the highest
frequency has the upper bound of infinity, there will be at least
one pair that could be used for watermarking. Assume a wa-
termarking pair candidate (tki, tkj). Their frequencies, fi and
fj , are changed such that (fw

i −fw
j) mod sij ≡ 0. To have an

upper bound for z, let us investigate which pair of tokens re-
sults in the highest difference. If we can determine the highest
difference, say rmax, then rmax can be assumed as the upper
bound for z since it is the highest remainder. Now, considering
Dhist

o , the highest difference is between tk0 (the token having
the highest frequency) and tk|Dhist

o |−1 (the token having the
lowest frequency). That means that the largest remainder for
any pair is rmax = (f0

0 − f0
|Dhist

o |−1). Thus it is natural to
accept that the upper bound of z is rmax. To conclude, z can
be chosen from (2, rmax). Overall, rmax can be calculated
as ∀fi, fj ∈ Dhist

o s.t. fi ≥ fj ; rmax = max({fi − fj}).
Hence, the upper bound for z is calculated. However, note

that this value can be small and can be an advantage to an
attacker. As discussed in Section IV-A, z affects the number of
chosen pairs; thus, it correlates with the mix of possible attacks
and is use-case scenario dependent. We plan to investigate
this observation theoretically and experimentally in terms of
security, robustness, and utility in the future.

2) Limit of t: Another critical parameter is t ∈ [0, sij − 1].
Note that since sij has an upper bound as z − 1, the highest
value assigned to t is z − 1. While in our experimental study
we chose t as a constant value, t could be also a percentage.
Assume that an owner wishes to state that it wants 50% of
error tolerance. Now, setting t = sij × 0.5 states that a pair,
say tki and tkj , will be accepted as a watermarked if (fi −
fj) mod sij ≤ sij/2. Thus, t represents the robustness level
an owner desires. For instance, if t = 0 then the watermark
becomes fragile since it cannot tolerate any changes in Dw,
thus missing watermarked pairs (i.e., high false negatives). On
the other hand, when t = 100, it is more robust and can
tolerate modifications in Dw; however, it also means that it
accepts more false positives (see also Section III-B4).

B. Validation Using Real World Datasets

Next we apply FreqyWM to three real world datasets from
different domains: (1) Chicago Taxi dataset [62]; (2) A
real click-stream dataset logging the URLs visited by a group
of users of the eyeWnder advertisement detection add-on
[58]; (3) Adult dataset [63]. Our intention is to validate our
main conclusion using real data from the previous evaluation
with synthetic data, i.e., that the heuristic approaches perform
well enough compared to the optimal. Furthermore, we aim
to report the real processing time on an ordinary machine for
generating and detecting the watermark using these datasets.

For our watermark generation, we set the modulo value
z = 131 and the budget b = 2. We run our algorithm
30 times and take the mean of total computations. Table
II presents our validation results. Taxi ID, URL, and Age
were chosen as tokens for Chicago Taxi, eyeWnder, and
Adult, respectively. After generation, for Chicago Taxi,
eyeWnder, and Adult datasets, our optimal solution chose
805, 38, and 21 pairs, respectively. Considering the heuristic
approaches, greedy chose 770 pairs for Chicago Taxi, 33
pairs for eyeWnder, and 20 pairs Adult while random chose
773, 31, and 17 pairs, for Chicago Taxi, eyeWnder, and
Adult, respectively. Running times of computations for wa-
termark generation on the Chicago Taxi, eyeWnder, and
Adult datasets were 182.51 secs, 420.81 secs, and 0.03 secs,
respectively (where we exclude histogram and watermarked
data generations). For watermark detection, the total detection
time for each watermarked datasets was less than 1 sec. As it
can be interpreted from Table II, the number of chosen pairs
increases when the number of eligible pairs increases. For
instance, while eyeWnder has more distinct tokens (11479)
than Chicago Taxi has (6573), eyeWnder has fewer
eligible pairs (257) than Chicago Taxi has (33308). Thus,
FreqyWM has selected more pairs for Chicago Taxi (805)
than it selected for eyeWnder (38).

C. Watermarking Multi-Dimensional Data

During our discussion so far, we set the token as a single
attribute. However, as we previously stated, a token does not
necessarily need to be restricted to a single attribute of a multi-
dimensional dataset. Therefore, a token can be also defined
as combination of more than one attributes (e.g., [Age,
WorkClass]) in the Adult dataset. We ran FreqyWM
on such token represented as [Age, WorkClass] with
the same parameter setting in Section IV-B and the number
of tokens (i.e., distinct [Age, WorkClass] attributes in
the real dataset) were 481. The size of pairs chosen for
watermarking was 20. With multi-dimensional data removing a
token appearance is as simple as with single-dimensional data.
Increasing, however, a token’s frequency is more involved. The
reason is that just repeating the value of the token would leave
other fields not being part of the token with a value to be set,
e.g., all the other fields beyond Age and WorkClass in the
Adult dataset. A naive solution would be select a random
appearance of the token and copy its other fields every time
that an additional instance of the token needs to be added to
the watermarked dataset. This, however, could create semantic
inconsistencies if there are constraints to be respected for
individual attributes or combinations of them. Making sure
that added appearances of a token do not lead to semantic
inconsistencies that, in addition to degrading the quality of
the data, could also give away the existence of a watermarked
pair to an attacker. This analysis requires domain knowledge
about what each dataset represents. Such knowledge, however,
is orthogonal to all previous steps of our algorithms and,
thus, can be appended as a last step based on one’s domain
knowledge of the data whenever a token’s frequency needs

to be increased. We are currently investigating them and the
effect of FreqyWM on data utility of such dataset with unique
attributes as it is difficult to determine as addressed by [23].

D. Comparison to Related Works

As stated previously, we cannot directly apply (numerical)
database watermarking to datasets similar to the ones we
used for validation. However, one naive approach would be
to convert a dataset to a numerical representation (e.g., a
histogram) and watermark this numerical representation. In a
nutshell, the histogram of a given dataset based on a predefined
token is generated and then, the histogram is treated as a
two dimensional database consisting of primary keys which
are the tokens and an attribute consisting of integer values
which are the frequencies. Later, a database watermarking is
employed on this histogram. Then as in FreqyWM data trans-
formation (e.g., removing/adding tokens) occurs according to
the (new) watermarked histogram computed by the database
watermarking. However, applying a numerical database wa-
termarking is not really straightforward since it will distort
the underlying dataset unexpectedly as a result of change
in histogram data (e.g., cosine similarity) and would require
modification in their watermarking techniques (e.g., how to
create a watermarked dataset from the watermarked numerical
representation). However, since this is the closest and simplest
approach, we compare against it.

To actualize the above approach, we considered two numer-
ical database watermarkings: 1) Shehab et al. [35] (referred
as WM-OBT) due to partitioning approach (i.e., grouping
tokens before watermarking) similar to FreqyWM; 2) Li et
al. [30] (referred as WM-RVS) due to being one of the most
recent reversible watermarking schemes introducing very small
distortion compared to other same family of watermarkings.

More specifically, WM-OBT follows a data partition ap-
proach in which a watermark, defined as a bit sequence, is
inserted on a group of partitions. Each data partition is filled by
tokens and the frequencies of the tokens in each partition are
modified/distorted by solving a minimization (if a watermark
bit is 0) or maximization (if a watermark bit is 1) problem
via a genetic algorithm [65], in which the objective function
is in the form of a sum of sigmoid functions. WM-RVS treats
each numeric value individually and changes its decimal part
by selecting the random least significant position based on
the watermarking key/bit and attributes. Furthermore, to apply
WM-OBT and WM-RVS on a histogram generated from a
dataset, we adjusted them such that their solutions produced
are integers since a frequency count cannot be a decimal value.

For comparison, we investigate them based on two con-
straints: 1) change in the original histogram after watermarking
(i.e., cosine similarity with watermarked histogram), and 2) the
ranking of the tokens after watermarking.

We ran FreqyWM, WM-OBT, and WM-RVS on our syn-
thetic data with skewness parameter 0.5 (with 1K distinct
tokens and 1M sample size) where we set b = 2, and
z = 131 for FreqyWM. We set parameters for WM-OBT
and WM-RVS such that the parameters are proportional to the

Fig. 3: Comparisons of the watermarked histograms generated from
WM-OBT (purple) and WM-RVS (fuchsia) w.r.t. the original data
histogram (black) for the synthetic dataset with dummy token names.

experimental settings of Shehab et al. [35] and Li et al. [30].
For WM-OBT, we use genetic algorithm (GA) technique for
optimization [65] where we fix the number of partitions as
20 (where each partition has around 50 tokens), watermark bit
sequence as [1, 1, 0, 1, 0], condition as 0.75, and we allow the
change (constraint) between [−0.5, 10]. The decoding thresh-
old minimizing the probability of decoding error is calculated
as 0.0966. For WM-RVS, we use the same bit sequence as
in WM-OBT without creating it from the chaotic encryption.
Also, let us note that WM-OBT took more than 30 minutes to
run for such a small size dataset due to its optimization while
WM-RVS was in the order of seconds. Figure 3 visualizes
how the watermarked data histograms look like with respect
to the original data histogram after applying WM-OBT and
WM-RVS based on the experiments.
Similarity. In FreqyWM, even with 2% budget, the similarity
between the original histogram and the watermarked histogram
is 99.9998%, indicating that not all the budget was exhausted.
On the other hand, for WM-OBT and WM-RVS, the similari-
ties are 54.28% and 96%, respectively. The mean and standard
deviation of the changes introduced to the histogram by WM-
OBT are 444 and 855.91, respectively while they are −69.43
and 414.10 for WM-RVS, respectively.
Ranking. Preserving the ranking is important because it allows
us not to sacrifice the utility of a dataset, e.g., preserving
the popularity of URLs. FreqyWM by definition maintains the
ranking of tokens. However, our analysis showed that WM-
OBT and WM-RVS changed the ranking of 998 and 987 out
of the total 1000 tokens, respectively!

The results on similarity and ranking support our claim that
applying a numerical database technique on histogram data
would result in unexpected and uncontrolled distortion that
seriously undermines the utility of the original data.

V. SECURITY AND ROBUSTNESS ANALYSIS

This section discusses the security and robustness of our
FreqyWM method against four attacks: guess, sampling,
destroy, and re-watermarking (false-claim) attacks which
are well-known attacks in watermarking as studied by [23].In
order to measure the robustness against sampling and destroy
attacks, we run our optimal solution on a dataset where the
skewness parameter α = 0.5 (with 1K distinct tokens and
1M sample size), unless stated otherwise, the modulo value

z = 131, and the budget b = 2 and it selected 139 pairs for
watermark. We run the experiments for 100 times and compute
the average accepted pairs over all repetitions.

A. Guess (Brute-Force) Attack

In the guess attack, the probabilistic polynomial time ad-
versary tries to guess the watermark, i.e., the secret embedded
in the data. This is possible only if it can figure out a subset
of token pairs {tki, tkj}l (where

(|Dhist
w |
2

)
≥ l ≥ k) based on

the watermarked data Dw, the random value R, and the mod-
ulo value z where the watermark detection algorithm based
on these inputs (for some fixed k and t) returns accept.
Assuming that the hash function is collision resistant, R is
random, and z is an integer, the probability of the attacker
being successful can be formally defined as:

Pr[R← {0, 1}λ; (Dw, Lsc = {{tki, tkj}|Lwm|, R, z})
←WmGenerate(Do, b) : A(Dw)→ L′

sc = {{tki, tkj}l, R∗, z∗}|
WmDetect(Dw, L′

sc, k, t) = 1] ≤ negl(λ)

Considering the typical parameter values, the probability of
success becomes negligible.
B. Sampling Attack

In this attack, A copies a random subsample from the
watermarked dataset Dw in an attempt to exploit (pirate/steal)
it while hoping that the watermark won’t be detectable within
the extracted sample. The attack is run for different sample
sizes from 1% to 90%, extracted from the original water-
marked dataset Dw. For each percentage and subsample we
apply the detection algorithm and compute the percentage of
accepted pairs. Also, for each subsample detection experiment,
we deploy different values of the threshold t for accepting
a pair as watermarked as t = {0, 1, 2, 4, 10}. The attack
scenario is as follows: A randomly selects x% of Dw where
x defines the percentage for the sampling attack (e.g., 1) as
a subsample size of 1M × x

100 . When the owner suspects the
dataset (possible subsampled), it scales it up to the size of
Dw by multiplying the frequency counts by 100

x by using its
info from the (original) watermarked dataset (e.g., via info
added to its metadata). For instance, for 1% sampling attack,
a subsample would have total of 1M×0.01 = 10K where each
fi is multiplied by approximately 0.01. Note that if the sample
size is greater than the number of distinct tokens, which is the
number of items in Dhist

w , the sample will have all the distinct
tokens with a high chance. This also means that all the chosen
watermarked pairs are in the subsample. Our results show that
the size of the extracted subsample does not greatly affect
the number of accepted pairs if it is greater than the number
of unique tokens (1K). Since the frequencies of the tokens
vary, the value of t does affect the result of the detection. For
example, with t = 0 the detection algorithm can detect around
36% (in average) of the watermarked pairs. When t increases
from 1 to 10, the performance of the detection increases (in
average) from 72% to 99.5%.

Let us now see the results when the size of the extracted
subsample is very low, so that it might not contain at least

1 token from the total 1K of unique tokens that the original
watermarked dataset has. Figure 4 shows the results for sample
size proportions between 0.0007% and 0.5%. Observe that if
the sample size is greater than 5× the number of unique tokens
(1K), the detection algorithm stabilizes its performance for
detecting the watermark. Below 2× (2K), the performance
starts to decrease with higher velocity. In these extreme cases,
the detection algorithm will have more difficulties to detect the
data as watermarked. However, the utility of the data is highly
degraded since the subsample sizes are very small compared
to the original size of 1M tokens. This causes a small number
of distinct tokens to be found in the subsample.
Effect of modulo bases. As seen previously, t is crucial for
detecting whether a pair is watermarked. For small values of
t to be sufficient to fend off sampling attacks, the remainders
need to be small numbers that are covered by t. One way
to achieve this is by ensuring that the modulo bases used
(i.e., the sij’s) are relatively small numbers when compared
to the actual appearance frequencies of watermarked pairs.
When this does not apply, the method will of course fail. For
instance, assume a watermarked pair involving frequencies
fi = 540, fj = 440 which under base sij = 100 leave a
remainder of 0. W.l.o.g, lets assume that a 50% frequency
attack leads to a dataset with fi = 270, fj = 220 which leads
to a remainder of (270 − 220) mod 100 ≡ 50. Now if t is
chosen smaller than 50 then the watermarked pair will not be
detected. The reason is that mod 100 leaves large remainders
when applied to fi and fj that are in the same order with
100. In our experimental results fi’s were always much larger
numbers than the employed sij , thereby, even small t’s would
detect a pair under a sampling attack. To determine the optimal
t and how robust it is against attacks, a further investigation is
needed as it depends on various parameters such as z, sij as
well on the mix of expected attacks as discussed later. Note
that our experimental results show that sij values are ∼ 2 order
of magnitude smaller than z. Furthermore, we also tested the
sampling attack in other watermarked datasets with different
values of the skewness parameter and obtained similar results.

Fig. 4: Sampling attack results with very small sample and α = 0.5.

C. Destroy Attack

In this case the attacker A tries to damage the watermark.
The no-security-by-obscurity principle [66] allows A to know
that it can destroy the watermark in a way that it cannot be
detected by the owner. A computes the histogram of water-
marked data Dw. A modifies the frequencies of tokens as it
pleases by allowing re-ordering (changing the popularity/rank

of the tokens) or without allowing re-ordering. We define these
two attacks and discuss FreqyWM’s robustness against them.

1) Destroy Attack without re-ordering: In this attack type,
A can modify the frequencies without changing the order of
frequencies. We introduce two types: (1) attacker changes the
frequencies randomly by the given boundaries and (2) attacker
changes the frequencies by (at most) some percentage.
Changing the frequencies randomly within the boundaries.
A calculates the boundaries for each token. Then, A chooses
a random value ri for each tki as ri ← (−li, ui). A changes
the frequency of tki and updates ui+1 of tki+1 by ri.
Changing the frequencies by (at most) some percentage.
A changes the frequencies of tokens up to some percentage
(e.g., 1%). To illustrate, A calculates the boundaries as ui and
li for each tki where it sets the percentage to 1%. It calculates
u′
i = floor(ui×0.01) and l′i = floor(li×0.01). Then it gets a

random value ri between (−l′i, u′
i). It hereby changes tki by at

most ±1%. After every change (f ′
i = fi+ri), the boundary of

the next element is updated. Thus, the attack never changes the
ranking/ordering since l′i and u′

i are already in the boundaries.
Figure 5 shows how robust FreqyWM is against these two

destroy attacks. We compare the success rate (the percentage
of accepted token pairs given threshold for accepting a pair t)
of detection algorithm with respect to modified watermarked
data after the attacks. We also include in the figure a sec-
ond dataset of skewness α = 0.7 that does not carry the
watermark, and report on how many of its pairs would be
falsely verified for different values of t. For an attack in which
the frequencies are changed by (at most) some percentage
(represented by the red line in the figure), FreqyWM can detect
around 90% of the pairs when t = 0. When t is increased,
after a point where t ≥ fi − fj mod sij , the success rate
converges at around 90%. For an attack where the frequencies
are changed randomly within the upper and lower frequency
boundaries (green line in Figure 5), FreqyWM can detect more
than 35% of the pairs when t = 0. Note that the latter is more
powerful than the former attack. There is a direct proportion
between t and the success rate. As shown, the success rate
reaches to 90% when t goes to 10.

From Figure 5, we can interpret in what parameter setting
false negative (rejecting a watermarked pair) and false pos-
itive (accepting a pair as watermarked while it is not) can
be avoided. Thus, the watermarking detection algorithm can
successfully detect a watermarked dataset attacked and reject
a dataset that was not watermarked. For instance, the rate of
false positive increases when the threshold for accepting a pair
t increases while the minimum number of accepted pairs for
detection k decreases which is the area under the results of the
dataset (not watermarked) with a different skewness parameter
(the area under the orange line). On the other hand, the rate
of false negative increases when the threshold accepting a
pair t decreases while threshold for detecting a watermark
k increases which is the area above the results of the attack
without re-ordering (the area above the green line) if we con-
sider a very strong attack. To avoid false negatives/positives,
convenient parameter settings (i.e., t and k) for detecting a

Fig. 5: Percentage of verified pairs for the following datasets:
(1) Dw : the original watermarked dataset α = 0.5 without any
attack/modification, (2) Dnon : a non-watermarked dataset defined
over the same token space but with α = 0.7, (3) Dr

w : Dw after
attacked by random attack without reordering, (4) D1

w : Dw after
attacked by changing frequencies at most 1%.

watermark lie between these two areas (between the orange
and the green lines in Figure 5). However, if a weaker attack
(changing the frequencies by some percentage) is considered,
the range of these parameters increases (the area between the
red and orange line). Hence, the detection algorithm can detect
a watermarked dataset and reject a dataset not watermarked
by the owner with a careful parameter setting. For instance,
adjusting t (and k) based on the nature of the data and the
specific application context can enable us to reduce the false
positives/negatives. This is an interesting future work.

2) Destroy Attack with re-ordering: In this attack type,
an attacker A can modify the frequencies as it pleases
without observing any ordering restrictions. Note that this
attack introduces more noise than the attack without re-
ordering which reduces the usability of watermarked data
Dw. A modifies the frequencies with various percentages
[10%, 30%, 50%, 60%, 80%, 90%] where the success rates are
[94%, 88%, 82%, 79%, 78%, 76%] respectively. FreqyWM can
detect the watermark with 76% chance up to modifications of
90% in frequencies approximately (where t = 4).

D. Re-watermarking/ False-Claim Attack

This attack is mounted by an attacker A creating a new
watermark on the watermarked data Dw, generated by an
honest owner.A generates its own watermarked data by simply
inserting Dw into the watermark generation algorithm as data
to produce DA

w . Then A can present DA
w and claim the

ownership of DA
w (since A can prove its ownership claim

by introducing its watermarking secret list LA
sc). This attack

creates a dispute since both the real owner, who created Dw,
and A have proofs of their ownerships. The dispute can be
arbitrated by introducing a judge (a trusted third party as
suggested by [67]) to the watermarking scheme. Both parties,
A and the real owner, introduce their secrets and their water-
marked data. A sends its secrets LA

sc and its watermarked data
DA

w . The real owner sends its secrets Lsc and its watermarked
data Dw. The judge computes watermark detection algorithm
on each received data for each secret which creates four
outputs. The judge compares these results and identifies the
real owner since only the secret of the real owner can produce
accept on both data. To show practicality of our defense

against the re-watermarking attack, we implemented the attack
above. Our results show that the first watermark is detected
with 92% on DA

w under t = 0. The attacker’s only way to
succeed is to perform successful guess or destroy attack which
it cannot perform as shown previously.

VI. DISCUSSION

We propose possible adjustments to FreqyWM for more so-
phisticated properties and discuss some challenges as follows:
• Incremental FreqyWM. In the literature, there exist water-
marking techniques that allow to update a watermark on a
dataset without computing insertion from scratch [57]. We
believe that an incremental FreqyWM can be built on top of
dynamic maximum weighted matching [68, 69] works but we
leave such investigations to future work.
• Multi-watermarks. One might watermark a dataset multiple
times with different intentions: 1) to have a chronological
order in the versions (e.g., data provenance); and 2) to falsely
claim ownership (see Section V-D). Non-withstanding the
motivation, we run an experiment to calculate the discrepancy
between the original (histogram) one and the final one after
10 insertions assuming a budget b = 0.002 for each iteration
on a sample dataset with α = 0.5. The resulting similarity
between the original and the latest watermarked version is
0.003%. As it is evident, FreqyWM did not introduce 0.02%
but rather very tiny distortion (see also the full version [61]
for further analysis, i.e., ML analysis). Hence, successive re-
watermaking can be practical with FreqyWM, but we plan to
extensively investigate it in the future.
•Challenging datasets. Apart from datasets with close to
uniform frequencies, FreqyWM can also be challenged when
the range of token values is too wide, e.g., sales’ datasets
with many decimal values, resulting to very few (if any)
repetition of the same value. One natural solution to this is
to first bucketize (cluster) the widely ranged data and then
apply FreqyWM at the level of the bucket as opposed to the
exact token value.

VII. CONCLUSIONS AND FUTURE WORK

We proposed FreqyWM, a novel frequency watermarking
technique for protecting the ownership of data in the emerging
new data economy. We analysed the performance of FreqyWM
and showed how FreqyWM can encode watermarks with
minimal distortion on the original data, provided that the data
has sufficient variability in terms of token frequencies. We
analysed FreqyWM’s robustness to generic attacks. FreqyWM
is applicable to large numbers of tuples sold in wholesale
manner in modern DMs. An interesting, yet challenging,
research direction is to consider how to watermark small sets
or even individual tuples used in distributed data operations
such as replication and remote hosting and/or query execution.
We are currently looking at more attack scenarios and at
devising systematic procedures for optimizing the parameters
and also how to apply FreqyWM to multidimensional datasets
by overcoming the challenges mentioned in Section IV-C. We
also investigate integrating data privacy (e.g., differentially-
private fingerprinting [70]).

ACKNOWLEDGEMENTS

Devriş İşler was supported by the European Union’s
HORIZON project DataBri-X (101070069). Nikolaos
Laoutaris was supported by the MLEDGE project
(REGAGE22e00052829516), funded by the Ministry of
Economic Affairs and Digital Transformation and the
European Union-NextGenerationEU/PRTR.

REFERENCES

[1] S. A. Azcoitia and N. Laoutaris, “A survey of data
marketplaces and their business models,” SIGMOD Rec.,
vol. 51, no. 3, pp. 18–29, 2022. [Online]. Available:
https://doi.org/10.1145/3572751.3572755

[2] A. Lutu, D. Perino, M. Bagnulo, E. Frias-Martinez,
and J. Khangosstar, “A characterization of the covid-19
pandemic impact on a mobile network operator traffic,”
in Proceedings of the ACM Internet Measurement
Conference, ser. IMC ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3419394.3423655

[3] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic
introduction to secure multi-party computation,” Found.
Trends Priv. Secur., 2018. [Online]. Available: https:
//doi.org/10.1561/3300000019

[4] C. Gentry, “A fully homomorphic encryption scheme,”
Ph.D. dissertation, Stanford University, USA, 2009.
[Online]. Available: https://searchworks.stanford.edu/
view/8493082

[5] D. Boneh, A. Sahai, and B. Waters, “Functional
encryption: Definitions and challenges,” in Theory
of Cryptography Conference, TCC. Springer,
2011. [Online]. Available: https://doi.org/10.1007/
978-3-642-19571-6 16

[6] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted
execution environment: What it is, and what it is not,”
in TrustCom/BigDataSE/ISPA. IEEE, 2015. [Online].
Available: https://doi.org/10.1109/Trustcom.2015.357

[7] Y. Li, D. Ghosh, P. Gupta, S. Mehrotra, N. Panwar, and
S. Sharma, “PRISM: private verifiable set computation
over multi-owner outsourced databases,” in SIGMOD:
International Conference on Management of Data,
Virtual. ACM, 2021. [Online]. Available: https://doi.
org/10.1145/3448016.3452839

[8] R. Poddar, T. Boelter, and R. A. Popa, “Arx: An
encrypted database using semantically secure encryp-
tion,” Proc. VLDB Endow., 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p1664-poddar.pdf

[9] N. Anciaux, L. Bouganim, P. Pucheral, I. S. Popa,
and G. Scerri, “Personal database security and trusted
execution environments: A tutorial at the crossroads,”
Proc. VLDB Endow., 2019. [Online]. Available: http:
//www.vldb.org/pvldb/vol12/p1994-anciaux.pdf

[10] X. Ren, L. Su, Z. Gu, S. Wang, F. Li, Y. Xie, S. Bian,
C. Li, and F. Zhang, “HEDA: multi-attribute unbounded
aggregation over homomorphically encrypted database,”

Proc. VLDB Endow., 2022. [Online]. Available: https:
//www.vldb.org/pvldb/vol16/p601-gu.pdf

[11] W. Zhou, Y. Cai, Y. Peng, S. Wang, K. Ma, and
F. Li, “Veridb: An sgx-based verifiable database,” in
SIGMOD: International Conference on Management
of Data. ACM, 2021. [Online]. Available: https:
//doi.org/10.1145/3448016.3457308

[12] P. Jougleux, “Data ownership (and succession law),” in
Facebook and the (EU) Law: How the Social Network
Reshaped the Legal Framework. Springer, 2022, pp.
129–143.

[13] J. Kennedy, P. Subramaniam, S. Galhotra, and R. C.
Fernandez, “Revisiting online data markets in 2022:
A seller and buyer perspective,” SIGMOD Rec.,
vol. 51, no. 3, pp. 30–37, 2022. [Online]. Available:
https://doi.org/10.1145/3572751.3572757

[14] R. C. Fernandez, P. Subramaniam, and M. J. Franklin,
“Data market platforms: Trading data assets to solve
data problems,” Proc. VLDB Endow., vol. 13, no. 11,
pp. 1933–1947, 2020. [Online]. Available: http://www.
vldb.org/pvldb/vol13/p1933-fernandez.pdf

[15] F. Banterle, “Data ownership in the data economy: a
european dilemma,” EU Internet Law in the Digital
Era: Regulation and Enforcement, pp. 199–225, 2020.
[Online]. Available: https://papers.ssrn.com/sol3/papers.
cfm?abstract id=3277330

[16] M. Asikuzzaman and M. R. Pickering, “An overview
of digital video watermarking,” IEEE Trans. Circuits
Syst. Video Technol., 2018. [Online]. Available: https:
//doi.org/10.1109/TCSVT.2017.2712162

[17] M. Begum and M. S. Uddin, “Digital image
watermarking techniques: A review,” Inf., 2020. [Online].
Available: https://doi.org/10.3390/info11020110

[18] H. Ma, C. Jia, S. Li, W. Zheng, and D. Wu,
“Xmark: Dynamic software watermarking using collatz
conjecture,” IEEE Trans. Inf. Forensics Secur., 2019.
[Online]. Available: https://doi.org/10.1109/TIFS.2019.
2908071

[19] X. Zhou, H. Pang, K. Tan, and D. Mangla, “Wmxml: A
system for watermarking XML data,” in International
Conference on Very Large Data Bases (VLDB). ACM,
2005. [Online]. Available: http://www.vldb.org/conf/
2005/papers/p1318-zhou.pdf

[20] R. Agrawal and J. Kiernan, “Watermarking relational
databases,” in Proceedings ofInternational Conference
on Very Large Data Bases, VLDB, 2002. [Online].
Available: http://www.vldb.org/conf/2002/S05P03.pdf

[21] R. Agrawal, P. J. Haas, and J. Kiernan, “A system for
watermarking relational databases,” in ACM SIGMOD
International Conference, 2003. [Online]. Available:
https://doi.org/10.1145/872757.872865

[22] T. Wang and F. Kerschbaum, “RIGA: covert and robust
white-box watermarking of deep neural networks,” in
WWW: The Web Conference, 2021. [Online]. Available:
https://doi.org/10.1145/3442381.3450000

[23] S. Rani and R. Halder, “Comparative analysis

https://doi.org/10.1145/3572751.3572755
https://doi.org/10.1145/3419394.3423655
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://searchworks.stanford.edu/view/8493082
https://searchworks.stanford.edu/view/8493082
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1145/3448016.3452839
https://doi.org/10.1145/3448016.3452839
http://www.vldb.org/pvldb/vol12/p1664-poddar.pdf
http://www.vldb.org/pvldb/vol12/p1994-anciaux.pdf
http://www.vldb.org/pvldb/vol12/p1994-anciaux.pdf
https://www.vldb.org/pvldb/vol16/p601-gu.pdf
https://www.vldb.org/pvldb/vol16/p601-gu.pdf
https://doi.org/10.1145/3448016.3457308
https://doi.org/10.1145/3448016.3457308
https://doi.org/10.1145/3572751.3572757
http://www.vldb.org/pvldb/vol13/p1933-fernandez.pdf
http://www.vldb.org/pvldb/vol13/p1933-fernandez.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3277330
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3277330
https://doi.org/10.1109/TCSVT.2017.2712162
https://doi.org/10.1109/TCSVT.2017.2712162
https://doi.org/10.3390/info11020110
https://doi.org/10.1109/TIFS.2019.2908071
https://doi.org/10.1109/TIFS.2019.2908071
http://www.vldb.org/conf/2005/papers/p1318-zhou.pdf
http://www.vldb.org/conf/2005/papers/p1318-zhou.pdf
http://www.vldb.org/conf/2002/S05P03.pdf
https://doi.org/10.1145/872757.872865
https://doi.org/10.1145/3442381.3450000

of relational database watermarking techniques:
An empirical study,” IEEE Access, vol. 10,
pp. 27 970–27 989, 2022. [Online]. Available:
https://doi.org/10.1109/ACCESS.2022.3157866

[24] N. Agarwal, A. K. Singh, and P. K. Singh, “Survey of
robust and imperceptible watermarking,” Multim. Tools
Appl., 2019. [Online]. Available: https://doi.org/10.1007/
s11042-018-7128-5

[25] R. Agrawal, P. J. Haas, and J. Kiernan, “Watermarking
relational data: framework, algorithms and analysis,”
VLDB J., 2003. [Online]. Available: https://doi.org/10.
1007/s00778-003-0097-x

[26] T. Ji, E. Yilmaz, E. Ayday, and P. Li, “The
curse of correlations for robust fingerprinting of
relational databases,” in RAID : International Symposium
on Research in Attacks, Intrusions and Defenses.
ACM, 2021. [Online]. Available: https://doi.org/10.1145/
3471621.3471853

[27] E. Quiring, D. Arp, and K. Rieck, “Forgotten siblings:
Unifying attacks on machine learning and digital
watermarking,” in IEEE European Symposium on
Security and Privacy, EuroS&P. IEEE, 2018. [Online].
Available: https://doi.org/10.1109/EuroSP.2018.00041

[28] A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikun-
tanathan, and D. Wichs, “Watermarking cryptographic
capabilities,” SIAM J. Comput., 2018. [Online].
Available: https://doi.org/10.1137/18M1164834

[29] X. Tang, Z. Cao, X. Dong, and J. Shen,
“Pkmark: A robust zero-distortion blind reversible
scheme for watermarking relational databases,”
in IEEE International Conference on Big Data
Science and Engineering, 2021. [Online]. Available:
https://doi.org/10.1109/BigDataSE53435.2021.00020

[30] W. Li, N. Li, J. Yan, Z. Zhang, P. Yu, and G. Long,
“Secure and high-quality watermarking algorithms for re-
lational database based on semantic,” IEEE Transactions
on Knowledge and Data Engineering, pp. 1–14, 2022.

[31] M. L. P. Gort, M. Olliaro, A. Cortesi, and C. F.
Uribe, “Semantic-driven watermarking of relational
textual databases,” Expert Syst. Appl., 2021. [Online].
Available: https://doi.org/10.1016/j.eswa.2020.114013

[32] C. Lin, T. Nguyen, and C. Chang, “LRW-CRDB: lossless
robust watermarking scheme for categorical relational
databases,” Symmetry, 2021. [Online]. Available: https:
//doi.org/10.3390/sym13112191

[33] S. Kumar, B. K. Singh, and M. Yadav, “A recent
survey on multimedia and database watermarking,”
Multim. Tools Appl., vol. 79, no. 27-28, pp. 20 149–
20 197, 2020. [Online]. Available: https://doi.org/10.
1007/s11042-020-08881-y

[34] M. H. Jony, F. T. Johora, and J. F. Katha, “A robust
and efficient numeric approach for relational database
watermarking,” in IEEE International Conference on
Sustainable Technologies for Industry 4.0 (STI), 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/
9732582

[35] M. Shehab, E. Bertino, and A. Ghafoor, “Watermarking
relational databases using optimization-based tech-
niques,” IEEE Trans. Knowl. Data Eng., 2008. [Online].
Available: https://doi.org/10.1109/TKDE.2007.190668

[36] D. Ibosiola, B. A. Steer, Á. Garcı́a-Recuero,
G. Stringhini, S. Uhlig, and G. Tyson, “Movie pirates of
the caribbean: Exploring illegal streaming cyberlockers,”
in Proceedings of the Twelfth International Conference
on Web and Social Media, ICWSM. AAAI Press,
2018. [Online]. Available: https://aaai.org/ocs/index.php/
ICWSM/ICWSM18/paper/view/17835

[37] W. Zhou, J. Hu, and S. Wang, “Enhanced locality-
sensitive hashing for fingerprint forensics over large
multi-sensor databases,” IEEE Trans. Big Data, 2021.
[Online]. Available: https://doi.org/10.1109/TBDATA.
2017.2736547

[38] Y. Lei, Q. Huang, M. S. Kankanhalli, and A. K. H.
Tung, “Locality-sensitive hashing scheme based on
longest circular co-substring,” in Proceedings of the
2020 International Conference on Management of
Data, SIGMOD. ACM, 2020. [Online]. Available:
https://doi.org/10.1145/3318464.3389778

[39] D. Chang, M. Ghosh, S. K. Sanadhya, M. Singh, and
D. R. White, “Fbhash: A new similarity hashing scheme
for digital forensics,” Digit. Investig., 2019. [Online].
Available: https://doi.org/10.1016/j.diin.2019.04.006

[40] C. N. K. Osiakwan and S. G. Akl, “The maximum weight
perfect matching problem for complete weighted graphs
is in pc*,” Parallel Algorithms Appl., 1995. [Online].
Available: https://doi.org/10.1080/10637199508915506

[41] Z. Galil, “Efficient algorithms for finding maximum
matching in graphs,” in ACM CSUR, 1986.

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms. MIT press, 2009.

[43] E. Ayday, E. Yilmaz, and A. Yilmaz, “Robust
optimization-based watermarking scheme for sequential
data,” in International Symposium on Research in
Attacks, Intrusions and Defenses, RAID, 2019. [Online].
Available: https://www.usenix.org/conference/raid2019/
presentation/ayday

[44] T. Ji, E. Ayday, E. Yilmaz, and P. Li, “Robust
fingerprinting of genomic databases,” CoRR, vol.
abs/2204.01801, 2022. [Online]. Available: https://doi.
org/10.48550/arXiv.2204.01801

[45] M. Kamran and M. Farooq, “A comprehensive survey
of watermarking relational databases research,” in arXiv
preprint arXiv:1801.08271, 2018.

[46] A. S. Panah, R. G. van Schyndel, T. K. Sellis,
and E. Bertino, “On the properties of non-media
digital watermarking: A review of state of the art
techniques,” IEEE Access, 2016. [Online]. Available:
https://doi.org/10.1109/ACCESS.2016.2570812

[47] M. E. Farfoura, S. Horng, J. Lai, R. Run, R. Chen,
and M. K. Khan, “A blind reversible method for
watermarking relational databases based on a time-
stamping protocol,” Expert Syst. Appl., 2012. [Online].

https://doi.org/10.1109/ACCESS.2022.3157866
https://doi.org/10.1007/s11042-018-7128-5
https://doi.org/10.1007/s11042-018-7128-5
https://doi.org/10.1007/s00778-003-0097-x
https://doi.org/10.1007/s00778-003-0097-x
https://doi.org/10.1145/3471621.3471853
https://doi.org/10.1145/3471621.3471853
https://doi.org/10.1109/EuroSP.2018.00041
https://doi.org/10.1137/18M1164834
https://doi.org/10.1109/BigDataSE53435.2021.00020
https://doi.org/10.1016/j.eswa.2020.114013
https://doi.org/10.3390/sym13112191
https://doi.org/10.3390/sym13112191
https://doi.org/10.1007/s11042-020-08881-y
https://doi.org/10.1007/s11042-020-08881-y
https://ieeexplore.ieee.org/document/9732582
https://ieeexplore.ieee.org/document/9732582
https://doi.org/10.1109/TKDE.2007.190668
https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17835
https://aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17835
https://doi.org/10.1109/TBDATA.2017.2736547
https://doi.org/10.1109/TBDATA.2017.2736547
https://doi.org/10.1145/3318464.3389778
https://doi.org/10.1016/j.diin.2019.04.006
https://doi.org/10.1080/10637199508915506
https://www.usenix.org/conference/raid2019/presentation/ayday
https://www.usenix.org/conference/raid2019/presentation/ayday
https://doi.org/10.48550/arXiv.2204.01801
https://doi.org/10.48550/arXiv.2204.01801
https://doi.org/10.1109/ACCESS.2016.2570812

Available: https://doi.org/10.1016/j.eswa.2011.09.005
[48] Y. Li and R. H. Deng, “Publicly verifiable ownership

protection for relational databases,” in Proceedings of th
ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS. ACM, 2006. [Online].
Available: https://doi.org/10.1145/1128817.1128832

[49] D. Hu, D. Zhao, and S. Zheng, “A new robust approach
for reversible database watermarking with distortion
control,” IEEE Trans. Knowl. Data Eng., 2019. [Online].
Available: https://doi.org/10.1109/TKDE.2018.2851517

[50] H. M. El-Bakry and M. Hamada, “A novel watermark
technique for relational databases,” in Artificial Intel-
ligence and Computational Intelligence - International
Conference, AICI 2010, Sanya, China, October 23-24,
2010, Proceedings, Part II, ser. Lecture Notes in
Computer Science. Springer, 2010. [Online]. Available:
https://doi.org/10.1007/978-3-642-16527-6 29

[51] S. M. Darwish, H. A. Selim, and M. M. El-
Sherbiny, “Distortion free database watermarking system
based on intelligent mechanism for content integrity
and ownership control,” J. Comput., 2018. [Online].
Available: https://doi.org/10.17706/jcp.13.9.1053-1066

[52] Y. Zhang, B. Yang, and X.-M. Niu, “Reversible water-
marking for relational database authentication,” 2008.

[53] W. Wang, C. Liu, Z. Wang, and T. Liang, “FBIPT: A
new robust reversible database watermarking technique
based on position tuples,” in International Conference
on Data Intelligence and Security, ICDIS. IEEE, 2022,
pp. 67–74. [Online]. Available: https://doi.org/10.1109/
ICDIS55630.2022.00018

[54] G. Gupta and J. Pieprzyk, “Reversible and blind
database watermarking using difference expansion,” Int.
J. Digit. Crime Forensics, 2009. [Online]. Available:
https://doi.org/10.4018/jdcf.2009040104

[55] K. Jawad and A. Khan, “Genetic algorithm and
difference expansion based reversible watermarking for
relational databases,” J. Syst. Softw., 2013. [Online].
Available: https://doi.org/10.1016/j.jss.2013.06.023

[56] M. B. Imamoglu, M. Ulutas, and G. Ulutas, “A
new reversible database watermarking approach with
firefly optimization algorithm,” Mathematical Problems
in Engineering, 2017. [Online]. Available: https://doi.
org/10.1155/2017/1387375

[57] C. Chang, T. Nguyen, and C. Lin, “A reversible database
watermark scheme for textual and numerical datasets,”
in IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, SNPD. IEEE, 2021.
[Online]. Available: https://doi.org/10.1109/SNPD51163.
2021.9704991

[58] C. Iordanou, N. Kourtellis, J. M. Carrascosa, C. Soriente,
R. Cuevas, and N. Laoutaris, “Beyond content analysis:
detecting targeted ads via distributed counting,” in
Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies,
CoNEXT. ACM, 2019. [Online]. Available: https:

//doi.org/10.1145/3359989.3365428
[59] G. Cormode, S. Maddock, and C. Maple, “Frequency

estimation under local differential privacy,” Proc. VLDB
Endow., 2021. [Online]. Available: http://www.vldb.org/
pvldb/vol14/p2046-cormode.pdf

[60] J. Katz and Y. Lindell, Introduction to Modern
Cryptography, Second Edition. CRC Press,
2014. [Online]. Available: https://www.crcpress.com/
Introduction-to-Modern-Cryptography-Second-Edition/
Katz-Lindell/p/book/9781466570269

[61] D. İşler, E. Cabana, A. Garcia-Recuero, G. Koutrika,
and N. Laoutaris, “Freqywm: Frequency watermarking
for the new data economy,” IMDEA Networks Technical
Report, Tech. Rep., 2022.

[62] “Chicago Data Portal,” 2022, https://data.cityofchicago.
org/Transportation/Taxi-Trips/wrvz-psew.

[63] “Adult Dataset,” 1996, https://archive.ics.uci.edu/ml/
datasets/Adult.

[64] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-
law distributions in empirical data,” SIAM Rev., 2009.
[Online]. Available: https://doi.org/10.1137/070710111

[65] D. Goldberg and K. Sastry, Genetic algorithms: the
design of innovation. Springer, 2007.

[66] A. Kerckhoffs, “A. kerckhoffs, la cryptographie militaire,
journal des sciences militaires ix, 38 (1883),” in Journal
des sciences militaires, 1883.

[67] A. Adelsbach, S. Katzenbeisser, and H. Veith,
“Watermarking schemes provably secure against copy
and ambiguity attacks,” in ACM workshop on
Digital rights management, 2003. [Online]. Available:
https://doi.org/10.1145/947380.947395

[68] S. Behnezhad, “Dynamic algorithms for maximum
matching size,” in ACM-SIAM Symposium on Discrete
Algorithms, SODA. SIAM, 2023. [Online]. Available:
https://doi.org/10.1137/1.9781611977554.ch6

[69] S. Solomon, “Fully dynamic maximal matching in
constant update time,” in IEEE Annual Symposium
on Foundations of Computer Science, FOCS. IEEE
Computer Society, 2016. [Online]. Available: https:
//doi.org/10.1109/FOCS.2016.43

[70] T. Ji, E. Ayday, E. Yilmaz, and P. Li, “Differentially-
private fingerprinting of relational databases,” CoRR,
vol. abs/2109.02768, 2021. [Online]. Available: https:
//arxiv.org/abs/2109.02768

https://doi.org/10.1016/j.eswa.2011.09.005
https://doi.org/10.1145/1128817.1128832
https://doi.org/10.1109/TKDE.2018.2851517
https://doi.org/10.1007/978-3-642-16527-6_29
https://doi.org/10.17706/jcp.13.9.1053-1066
https://doi.org/10.1109/ICDIS55630.2022.00018
https://doi.org/10.1109/ICDIS55630.2022.00018
https://doi.org/10.4018/jdcf.2009040104
https://doi.org/10.1016/j.jss.2013.06.023
https://doi.org/10.1155/2017/1387375
https://doi.org/10.1155/2017/1387375
https://doi.org/10.1109/SNPD51163.2021.9704991
https://doi.org/10.1109/SNPD51163.2021.9704991
https://doi.org/10.1145/3359989.3365428
https://doi.org/10.1145/3359989.3365428
http://www.vldb.org/pvldb/vol14/p2046-cormode.pdf
http://www.vldb.org/pvldb/vol14/p2046-cormode.pdf
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Adult
https://doi.org/10.1137/070710111
https://doi.org/10.1145/947380.947395
https://doi.org/10.1137/1.9781611977554.ch6
https://doi.org/10.1109/FOCS.2016.43
https://doi.org/10.1109/FOCS.2016.43
https://arxiv.org/abs/2109.02768
https://arxiv.org/abs/2109.02768

53/72

Anexo 4: Understanding the price of data in
commercial Data Marketplaces

Understanding the Price of Data in Commercial
Data Marketplaces

1st Santiago Andrés Azcoitia
IMDEA Networks Institute

Universidad Carlos III de Madrid
Leganés, Spain

santiago.azcoitia@imdea.org

2nd Costas Iordanou
Cyprus University of Technology

Limassol, Cyprus
kostas.iordanou@cut.ac.cy

3rd Nikolaos Laoutaris
IMDEA Networks Institute

Leganés, Spain
nikolaos.laoutaris@imdea.org

Abstract—A large number of Data Marketplaces (DMs) have
appeared in the last few years to help owners monetize their data,
and data buyers optimize their marketing campaigns, train their
ML models, and facilitate other data-driven decision processes.
In this paper, we present a first of its kind measurement study
of the growing DM ecosystem, focused on understanding which
features of data are actually driving their prices in the market.
We show that data products listed in commercial DMs may
cost from few to hundreds of thousands of US dollars. We
analyze the prices of different categories of data and show that
products about telecommunications, manufacturing, automotive,
and gaming command the highest prices. We also develop
classifiers for comparing data products across different DMs, as
well as a regression analysis for revealing features that correlate
with data product prices of specific categories, such as update
rate or history for financial data, and volume and geographical
scope for marketing data.

Index Terms—Data economy, data marketplaces, measure-
ment, data pricing

I. INTRODUCTION

Data-driven decision making powered by Machine Learning
(ML) algorithms is changing how the society and the economy
work and is having a profound positive impact on our daily
life. A McKinsey report predicted that data-driven decision-
making could reach US$2.5 trillion globally by 2025 [30],
whereas a recent market study within the scope of the Euro-
pean Data Strategy estimates a size of 827 billion euro for the
EU27 [14]. ML is driving up the demand for data in what has
been called the fourth industrial revolution.

To satisfy this demand, several data marketplaces (DMs)
have appeared in the last few years. DMs are mediation
platforms that aim to connect data providers (acting as sellers)
to data consumers (acting as potential buyers), and to manage
data transactions between them. This ecosystem includes open
data repositories [28], [33], general-purpose [2], [7], [18],
[19], [21], and specialized or niche DMs targeting specific
industries, such as automotive [13], [50], financial [8], [55],
marketing [41], [42], and logistics [65], to name a few.

An issue of paramount importance is that of data pricing.
Some marketplaces leave it to sellers to set a price for their

Our research has been supported by MLEDGE project
(REGAGE22e00052829516), funded by the Ministry of Economic Affairs and
Digital Transformation and the European Union-NextGenerationEU/PRTR,
and by the European Union’s HORIZON project DataBri-X (101070069).

data products. Many of them do not list prices of their
products, but leave it to buyers and sellers to agree on a price
after a negotiation. Due to the elusive nature of the traded
“commodity”, pricing is a very complex matter, even more
than in the case of material goods [53]. Unlike oil, to which
it is often compared [17], data can be copied / transmitted /
processed with close to zero cost. Even the use of the term
commodity is a gross oversimplification of what data is. Notice
that whereas two liters of gasoline yield a similar mileage on
two similar cars under similar driving styles, nothing of this
sort applies to data since 1) two datasets of equal volume may
carry vastly different amounts of usable information, 2) the
same information may have tremendously different value for
Service A than for Service B, and 3) even if the per usage value
of two services is the same, Service A may use the data 1,000
times more intensely than Service B leading to extremely
different produced benefits. Some authors compared data to
labor, too [6]. However, unlike labor, data is non-rivalrous
meaning that its supply is not affected by its consumption, and
thus selling data for a Service A does not prevent a provider
from selling (a copy of) the same data for a Service B.

The research community at the intersection between com-
puter science and economics has studied several aspects of
data pricing. Still its elusive nature, and the complex business
models under which it is made available makes it very hard
to prescribe a price for data. Ultimately it is the market that
decides and sets prices via complex mechanisms and feedback
loops that are hard to capture. Despite some other works trying
to measure the price of personal data of individuals [12], [43],
[51], there is no systematic measurement study about the price
of data products traded in commercial data marketplaces.

Our Contributions: In this paper we present what is, to
the best of our knowledge, the first systematic measurement
study of marketplaces for B2B data products. This ecosystem,
despite being quite vibrant commercially, remains completely
unknown to the scientific community. Very basic questions
such as “What is the range of prices of data traded in
modern DMs?”, “Which categories and types of data products
command the highest prices?”, “Which are the features, if any,
that correlate with the most expensive data products?” appear
to have no answer and evade most meaningful speculations.

Fig. 1: Summary of our methodology

To answer such questions we followed the methodology
summarized in Fig. 1. First, we checked existing surveys for
compiling a list of data marketplaces [4], [57], [60]–[62]. We
then selected 10 of them that fulfill necessary criteria for
a measurement study. For these ones we developed custom
crawlers for retrieving information about the products they
trade. Using these crawlers, and adding the portfolio of another
30 data providers, we obtained information for more than
210,000 data products and a catalog of more than 2,100
distinct sellers1. We also developed data product category
classifiers, meaning ML models for identifying products of
similar categories across marketplaces, and executed 9 dif-
ferent regression models to understand which features are
actually driving their prices.

Our Findings: Analyzing the collected data we observed that
the majority of data products were either given for free, or did
not carry a fixed price, but rather were up for direct negotiation
between the seller and interested buyers. Focusing on the ones
that carried a price, some 4,200 of them, we observed that:
• Prices vary in a wide range from few, to several hundreds of
thousands of US dollars. The median price for data products
sold under a subscription model is US$1,400 per month, and
US$2,200 for those sold as an one-off purchase.
• Using classifiers, we enriched our sample by consistently
labeling products according to AWS’s categories.
• We found that those related to telecoms, manufacturing,
automotive and gaming command the highest median prices,
and that the most expensive ones relate to retail and marketing.
• Using regression models, we managed to fit the prices of
commercial products from their features with R2 above 0.84.
• Due to the heterogeneity of the sample there is no single
feature that drives the prices, but instead we spotted mean-
ingful features that drive the prices of specific categories of
data. For example, data update rate is a key price driver for
financial and healthcare-related products, whereas geo-spatial
localization and the possibility of connecting data points from
the same owner are for marketing data.

1Please, find datasets generated during our research, and code to reproduce
our experiments at https://gitlab.com/sandresazcoitia1/data-pricing-tool.

• Overall our models use features related to the category and
description of the different data products (i.e., ‘Financial’,
‘Retail’, ‘stock’, ‘contact’, ‘list’, etc.), features related to the
data products volume and units, as well as singular character-
istics extracted from the data products description (i.e., words
like ‘custom’, ‘accuracy’, ‘quality’, etc.) to forecast the data
product price. Features related to ‘what’ and ‘how much’ data
a product contains are driving 66% of its price.

Like in all measurement studies of Internet-scale phenom-
ena, we will refrain from claiming that any of our findings
are “typical” or “representative”. What we do claim, however,
is that to the best of our knowledge, our measurement study
is the first one that attempts to characterize the DM sector,
and our above mentioned quantitative results were previously
totally unknown. Also, as it will become evident from our
methodology later, and to the best of our knowledge, we
collected all publicly available pricing information that was
accessible during the time of our study.

The remainder of the paper is structured as Fig. 1 shows.
First, we frame the scope of our analysis and show some initial
outcomes of our measurement study in Sect. II. In Sect. III,
we present an analysis on data product pricing in commercial
marketplaces. Furthermore, Sect. IV dives deeper into analyz-
ing AWS’ DM and DataRade, which account for the largest
number of price references in our sample. We then develop
tools for enriching our sample and we compare across DMs
in Sect. V. Finally, in Sect. VI, we apply several methodologies
for analyzing the importance of different metadata features in
determining the price of commercial data products.

II. COMPILING A DATASET OF DATA PRODUCTS

Existing works and surveys on commercial data market-
places [4], [57], [60]–[62], an extensive web search and a
consultation with experts in the area allowed us to compile a
list of data marketplaces and understand the different business
models they use to compete in this ecosystem. From our
analysis, we identified a subset of DMs that fulfilled the
criteria for using them as sources of data for a reproducible
measurement study. Such criteria include that they grant access
to their product catalog without requiring an account, or

through an account but without a vetting process or upfront
paid registration, that they have a reasonably large catalog
that includes sufficient descriptions of their data products, and
that they include a clear description of their pricing policy.
Out of the 180 initial DMs, only 10 companies fulfilled all
of the above criteria. Most of them did not make it to the
list simply because they do not allow non-paying users to
browse their catalogs. For example, marketing-related private
marketplaces such as Liveramp, LOTAME or TheTradeDesk
neither provide public per-product information nor any price
references. However, they do provide information about their
data partners. By analyzing this information, we did find that
45% of providers in those private marketplaces sell through
general-purpose public ones, such as AWS or DataRade, as
well, and hence we have included their products in this study.
We also discarded several otherwise scrapable general-purpose
DMs such as Data Intelligence Hub (DIH), Google Cloud DM
because they included only free data products. We chose to
scrape the largest of these free open data marketplaces, Adva-
neo, to help in training our data product category classifiers.

TABLE I: Summary of scraped DMs

Marketplace #Products #Paid prod. #Sellers
Advaneo 198,743 1 N/A
AWS 4,263 2,674 262
DataRade 1,592 1,592 1,262
Snowflake 889 889 200
Knoema 158 158 142
DAWEX 160 160 79
Carto 8,182 5,283 42
Crunchbase 9 9 15
Veracity 115 95 38
Refinitiv 187 187 76
Other providers 777 775 30

Table I lists the 10 DMs that we use as data sources
in our study. Overall, we include 6 general-purpose and 4
niche DMs, as well as 30 data providers2 that, in addition to
commercializing their own 777 data products through DMs,
provide valuable pricing information on their own websites.

We developed our own web crawler to render and download
web pages, and specialized parsers for extracting metadata. We
followed common crawling good practices [31]. For example,
we avoided visiting several times the same product page in
each scraping round and we set up a random wait time from
1 to 2 minutes after requesting a web page in order to avoid
flooding the target servers with requests.

We collected information related to 215,075 products from
2,115 distinct sellers in total. We noticed the huge market
fragmentation with lots of data providers working with a large
number of marketplace platforms. This is natural in a cross-
industry nascent market, though hard for data providers to
manage. In fact, most data providers (81%) work with only one
DM in addition to selling their products through their own web

242matters, Airbtics, Apptopia, Benzinga, Bizprospex, BoldData, BookY-
ourData, bronID, BuiltWith, DataScouts, Demografy, ebCard, Enigma, ES-
GAnalytics, HGXN, IFDAQ, ipinfo.io, MultimediaLists, MyDex, OikoLab
Weather, Onclusive. Open Corporate, PanXchange, Pipecandy, Shutterstock,
Storm Glass, TelephoneListsBiz, Unwrangle, USASalesLeads, and Walklists.

site. 45% of providers in niche financial and marketing-related
marketplaces sell through general-purpose DMs, such as AWS
or DataRade, as well. We also spotted DMs advertising and
offering their products in other DMs (e.g., Battlefin or CARTO
through AWS). Finally, small and niche providers (58% of
them) are focusing on one product only.

We scraped all available metadata for data products such
as the product id, title, description, source, seller and, when
available, its geographic scope, volume, category, use cases,
update rate, historic time span, format, etc. We searched for
and eliminated duplicates from a single seller within the same
DM. We paid special attention to information related to pricing
and actual prices of data products.

Fig. 2: Data products by country

Regarding the geographical scope of data products, we
found that DMs aggregate information from different coun-
tries. 14,472 (7%) of the products did not inform about their
scope, and 1,177 (around 10% out of the 11,823 paid products)
claimed to be global. Figure 2 shows the number of data
products covering each country. Regarding the number of
paid data products, US leads this ranking: around 30% of
paid products cover this country. Canada (9.3%), UK (9.2%),
Germany (7.6%), France (7.4%), and Spain (7.1%) follow the
US in the ranking of countries by number of paid products.

III. OVERVIEW OF DATA PRODUCT PRICING

It may appear initially surprising that, despite being com-
mercial entities in the B2B space, most of the surveyed and
some of the scraped DMs offer predominately free (most of
the time open) data. Again we point to the fact that these are
privately held companies [2], [21] and not open data NGOs or
government initiatives. Our conjecture is that since DMs are
two-sided platforms, pre-populating them with free data is a
very reasonable bootstrapping strategy, since it can attract the
initial “buyers”, which in turn will attract commercial sellers
and thus help the marketplace grow its revenue.

Next, we focus on the 11,823 paid data products, for which
we managed to extract information about their pricing, and
whose price is higher than zero. Despite being few compared
to the free ones, this sample provides valuable insights about
the current status of commercial DMs, as well as to where this
segment of the economy is heading to, and how.

Fig. 3: Histogram and CDF of data products

There is a great magnitude of pricing schemes for data
products, such as seller-led, buyer-led (bidding), revenue-
sharing, tiered-pricing, subject to negotiation, usage-based,
etc [4], [44], [53]. Predominant among the 11,823 non-free
data products are the subscription-based model (i.e., buyer
paying for a subscription to get access to data for a period
of time), and the one-off model (i.e., lump sum payment for
data), seller-led in both cases. The first one is used mostly
for “live” data usually accessed via an API (e.g., IoT sensor
data), whereas the second is used for more static data, which
are usually downloaded as one or more files.

4,162 products from 443 distinct providers provided clear
information about their prices. Figure 3 shows a histogram and
the corresponding CDF of monthly prices for data products.
Regarding those offered under a subscription model, we see
prices across a wide range up to US$150,000 per month.
Cheap products below US$100 per month are often curated
and cleaner versions of open data. For example, a seller
offers a historical compilation of quarterly reports submitted
to the US Securities and Exchange Commission (SEC), also
downloadable from their websites. They also include low-cost
“promotion samples” of more expensive products from well-
known sellers, such as GIS data and supporting metadata for
a small area of some US cities. The median price is US$1,417
per month. Almost one-third of all products, including targeted
market data for example, are sold for US$2-5k monthly.

Comparing to products sold under a one-off model, (1) the
latter tend to be more expensive: median price US$2,176
vs. US$1,417 per month for subscription-based products;
maximum price US$500,000, more than 3 times higher than
the maximum in subscription-based access, and (2) one-off
products have a price histogram more normally distributed
around its median at US$2,176. Within the heterogeneous set
of products within the US$1,000-4,000 interval, we found a
large group of voluminous targeted contact data. Interestingly,
we observe a long tail of valuable products in Fig. 3.

IV. ANALYZING DATA PRODUCT CATEGORIES IN
INDIVIDUAL DATA MARKETPLACES

To get a more in-depth understanding of data pricing, we
analyzed the catalog of AWS’ DM and DataRade, the ones
with the largest base of paid products with prices. The former
tags data products in 10 different categories, whereas the latter
allows data products to be positioned in a hierarchy with more
than 300 categories and more than one (out of 150) use cases.
Specifically, a product can belong to none, one, or several
categories. For instance, credit card transaction data products
are classified both as ‘Financial’ and ‘Retail, Location and
Marketing’, whereas those related to weather are not labeled in
AWS. We have marked such unclassified products as ‘Other’
in our sample.

(a) Subscription prices by industry in AWS.

(b) Subscription prices by category in DataRade.

Fig. 4: Monthly price by data category in AWS and DataRade.

Figure 4 shows box plots of products by first level cate-
gory in AWS and DataRade. ‘Telecom’, ‘Manufacturing’ and
‘Automotive’ categories exhibit a median price significantly
above the global (×2.6, ×2.3 and ×2, respectively) in AWS,
whereas ‘Credit Rating’, ‘Mobile App’ and ‘Healthcare’ data
show a higher median price (×8.3, ×3.7 and ×2.5 above
the overall median, respectively) in DataRade. In both cases,
the most expensive products are related to marketing (‘B2B’,
‘Consumer’ and ‘Commerce’ in DataRade).

V. COMPARING ACROSS MARKETPLACES

Comparing information about data products from different
marketplaces is not a straightforward task since i) they provide
metadata of different granularity and level of detail, and ii)
they use different categorization to describe their products. To
overcome these challenges, we developed a methodology to
homogenize the categorization of data collected in order to be
able to compare similar products across marketplaces.

A. Dealing with different levels of detail

Some marketplaces provide more information than others
about their offers. To sort this out, we built a common
cross-DM database utilizing a superset of all the different
description fields found in different data marketplaces. Apart
from their category and text descriptive fields, data product
records include the time scope, the volume and units, any
potential limitations (e.g., maximum number of users), add-
ons, granularity of the information, geo-scope at country level,
data delivery methods, update frequency and data format.

We normalized and stored in this cross-DM database all
the information from the scraped datasets. We managed to
fully automate the extraction of most of the fields (18 out
of 27), which were directly scraped from the web pages of
the different DMs. This extraction was semi-automated for
5 fields, meaning that they were automatically extracted for
certain marketplaces, or retrieved from product descriptions for
others, in a process that required a manual check afterwards.
For example, update rate of data is usually included in the
general description of a data product, but the presence of the
word ‘monthly’ may not necessarily point to a monthly update
rate. Information about data volume or data subject units was
automatically extracted only for DataRade and BookYourData,
and required computer-aided manual typing in the rest of the
DMs (we highlight and extract numbers and their context from
data descriptions). Manual checks were performed by three
different experts. Any ambiguities and disagreements were
resolved by majority voting.

B. Dealing with different categorization systems

In Sect. IV we showed that every marketplace has its own
way to classify data. Furthermore, boundaries between tags
are often blurry, and the criteria followed by different DMs
to label a data product with a certain category tag are not
necessarily coherent. For example, only certain marketplaces
mark ‘credit card transaction’ data products as ‘financial’,
whereas all DMs label them as related to ‘marketing’. Thus,
even if we find apparently comparable categories across dif-
ferent marketplaces, we may miss relevant data products due
to inconsistencies in their categorization processes.

We addressed this issue by developing a series of natural
language processing naı̈ve Bayes (NB) classifiers [20], [22],
[39]. In our first attempt, we wanted to identify similar data
products – those that belong to the same category – between
two different (source and destination) DMs. As a result, we
trained both multinomial and complement versions of NB clas-
sifiers to detect data products from the source DM that belong

in a certain category by using feature vectors based on the
information provided by the data product description from the
source DM. We used bag of words [36] and data preprocessing
steps such as removing stop words and words with numbers,
using stemming and TF-IDF transformation [47], [56]. Then
we validated the resulting classifier against a manually la-
beled sample from the destination DM. Manual labeling was
performed by three different experts. Any ambiguities and
disagreements were resolved again by majority voting.

We utilized the above methodology to build different clas-
sifiers to help us compare data products between the two DMs
including more price references, namely DataRade (destination
DM) and AWS (source DM). We generated our feature vectors
based on AWS data product descriptions (source DM) and
applied the resulting classifiers to DataRade data products
(destination DM). We were interested in finding out: (1) what
percentage of products from those categories could we identify
in DataRade, (2) whether categorization and pricing were
coherent between them, and (3) whether we could enrich our
metadata by adding AWS’s inferred categories to all products.

We utilized our cross-DM database to generate the train/test
datasets at 80/20 split in order to train and test the corre-
sponding classifiers. We observed that multinomial classifiers
outperformed the complement NB for this task so we pro-
ceeded with the former ones. The resulting classifiers yield an
acceptable F1 score above 0.85 (average for 50 executions
with different random 80/20 train/test splits). In fact, they
identified meaningful and reasonable stems when tagging
products related to each category. For example, for the two
categories including more data products:
Financial: ‘system’, ‘sec’, ‘exchang’, ‘type’, ‘file’, ‘form’,
‘edgar’, ‘secur’, ‘act’, and ‘compani’.
Retail, Location and Marketing: ‘locat’, ‘topic’, ‘b2b’,
‘score’, ‘echo’, ‘trial’, ‘compani’, ‘visit’, ‘intent’, ‘consum’.

We then validated the models against a manually labeled
sample from DataRade. Manual labeling was performed by
three different experts. Any ambiguities and disagreements
were resolved again by majority voting. The validation set
included 745 manually pre-labeled with both ‘Financial’ and
‘Retail, Location and Marketing’ tags. The models trained
only with data from AWS did not perform so well on the
validation set (F1 scores of 0.73 and 0.43 for ‘Financial’ and
‘Retail, Location and Marketing’ data). To generalize further
our methodology and improve its accuracy, we enriched the
train data with information from other DMs. In particular:
(1) The Financial classifier was trained with 95,208 labeled
descriptions of products from 4 different entities (Advaneo,
Carto, AWS, and Refinitiv), and 45,298 financial products.
(2) The Retail, Location and Marketing classifier was trained
with 3,828 descriptions from 3 entities (AWS, BookYourData
and TelephoneLists), including 1,614 marketing products.

By adding products belonging to the same category from
other DMs we observed better balance between precision and
recall and an overall improvement of model generalization.
We also observed an increase of the F1 score in the test set.
Particularly, adding information from Refinitiv improves the

F1 score from 0.73 to 0.79. In the case of ‘Retail, Location and
Marketing’, adding information from specialized marketing
DMs (e.g., BookYourData), drastically improves the F1 score
from 0.43 to 0.74. We tested multiple classifiers, with and
without stemming, and we found that using word-based instead
of stem-based features led in general to more accurate results
in both cases (+5% F1 score). Table II shows the accuracy
obtained by both classifiers.

TABLE II: Score of data product classifiers
Accuracy Precision Recall F1 Score

Test - Financial 0.93 0.97 0.81 0.88
Test - Retail 0.95 0.96 0.88 0.91
Val. - Financial 0.89 0.72 0.88 0.79
Val. - Retail 0.78 0.81 0.68 0.74

We used them to label data products in DataRade, and we
located 619 and 701 ‘Financial’ and ‘Retail, Location and
Marketing’ data products, which represent 39% and 44% of
the total sample, respectively. As happened in AWS, not only
do those categories contain the largest number of products in
DataRade, but the most expensive ones are tagged as ‘Retail,
Location and Marketing’, as well.

We repeated the process for the rest of the 11 AWS data
categories, and this way we managed to enrich our sample by
homogeneously labeling products based on their descriptions.
The four categories with highest median prices are the same as
in AWS, but in a different order. Again, most products belong
to ‘Financial’ and ‘Retail, Location and Marketing’, and the
most expensive ones belong to the latter category.

Does this methodology work if we switch source and
destination DMs? In order to answer this question, we trained
NB classifiers to detect products in AWS related to relevant
use cases and categories in DataRade. In this case, DataRade
acted as the source DM, i.e., it provided descriptions and
tagging information to train the classifiers, whereas AWS’
role was the destination DM, whose products we labeled with
some of DataRade’s tags and driven by the criteria we learned
from the source DM. In particular, we focused on products
belonging to the ‘B2B Marketing’, ‘Audience Targeting’ and
‘Risk Management’ use cases in DataRade, some 46, 48 and
30 products out of 745 respectively. Since the training set is
imbalanced and the number of samples is low, complement
NB outperformed multinomial NB in this case. We trained
the classifiers and obtained the log-probability of belonging in
each category for all the data products in AWS. As a result, at
least 16 out of the top 20 data products showing the highest
log-probability turned out to be useful for those specific use
cases, according to the assessment of three different experts.

VI. WHICH ARE THE FEATURES DRIVING DATA PRICES?

So far we have seen an overview of data pricing, looked
at the prices of particular categories, developed and applied
a methodology to homogeneously label products across mar-
ketplaces in our sample. Our final goal is to understand the
prices of data in commercial data marketplaces.

For that purpose, we first extract features to train regression
models for predicting the prices of real commercial data
products. We do not intend to build state-of-the-art price
predictors, but rather to understand which features are driving
the price of data. Therefore, we conduct feature importance
analysis on the resulting regression models and we find out
which features have the highest impact on the observed prices
for the different data products in our corpus.

A. Building a feature matrix to feed regression models

An additional preprocessing step is needed in order to trans-
form the fields of our cross-DM database into a set of valuable
features that can be ingested by ML regression algorithms.
This process uses the NLTK [9] and Scikit-learn [52] Python
libraries and includes mainly the following steps:

1) Extraction of ‘word’ features from the title and the
textual description of each data product. We use bag
of words [36] and data preprocessing steps such as
removing stop words and words with numbers, TF-IDF
transformation [56], and stemming [47]. In addition, we
have sellers’ names removed from the vocabulary, so
as to avoid bias introduced by knowing their identity.
Finally, we prepare matrices for different vocabulary
lengths and optimize each algorithm for this parameter.

2) Breakdown of volume-related fields in 13 different
groups depending on their nature. For example, we
separate data products targeting ‘entities’ or ‘compa-
nies’, from those whose subjects are ‘individuals’ in
different features. The resulting comparable units are in
turn normalized, and a new overarching feature (‘units’)
measuring the percentage of units covered is added to
compare products across groups of units.

3) Calculation of country-level binary features to indicate
whether a certain country is covered by a data product.

4) Homogenization of the units of time when measuring the
time scope of the products, what we will call history.

Before feeding the models, we reduce the number of input
features by discarding those that have a unique value, which
may appear when filtering the complete dataset by category.
Next, we unify groups of features showing a high cross-
correlation among them, i.e., R2 ≥ 0.9.

As a result of this featurization process, we reduce each
sample product to a feature vector and produce a feature matrix
to train our regression models. Table III lists feature groups
and some examples of their individual features. We organize
features in 10 disjoint sets according to their nature and the
basic questions they answer about data products.

We evaluated the linear correlation of individual features
with respect to data product prices. Not surprisingly, it turns
out that none of them is linearly correlated to price, as
opposed to what we found for specific sellers. Our challenge
now is measuring which features and groups of features are
more significant in determining the price of data products in
commercial marketplaces.

TABLE III: List of feature groups
Question Group Definition Nº features Example of features

What?
Category Labels attached to the product that define the type of data

it contains
11 ‘Weather’, ‘Gaming’, ‘Financial’

Description Stem-like features obtained from data product descriptions up to 2000 ‘wordmarket’, ‘wordidentifi’, ‘wordlist’
Identifiability Tells whether the product allows the buyer to recognize the

activity of individuals or to identify specific companies
2 ‘idSessions’, ‘IdCompanies’

How much? Volume Normalized nº units covered broken down by the nature of
such units

14 ‘units’, ‘people’, ‘entities’

Update rate Defines the frequency between data updates as announced
by the seller

11 ‘real time’, ‘monthly’, ‘hourly’

How?
Delivery method Defines how the buyer can have access to data 8 ‘S3Bucket’, ‘Download’, ‘FeedAPI’
Format Defines the way in which data is arranged 17 ‘txt’, ‘shapefile’, ‘xls’
Add-ons Tells whether the product attaches any add-on or has any

limitations
2 ‘ProfServices’, ‘Limitations’

When? History Time scope included 1 ‘History’
Where? Geo scope Metrics about countries included in the data product up to 249 ‘Nº Countries’, ‘USA’, ‘Canada’

TABLE IV: Accuracy achieved by regression models

Model Financial Marketing Healthcare All
R2 MAE MSE R2 MAE MSE R2 MAE MSE R2 MAE MSE

RF 0.85 0.2 0.14 0.86 0.21 0.13 0.78 0.25 0.15 0.84 0.23 0.16
kN 0.78 0.31 0.26 0.74 0.33 0.24 0.77 0.26 0.17 0.69 0.37 0.31
GB 0.82 0.23 0.16 0.8 0.28 0.19 0.73 0.27 0.19 0.79 0.3 0.22
DNN 0.73 0.33 0.35 0.77 0.30 0.22 0.68 0.26 0.18 0.72 0.33 0.28

TABLE V: Top 10 most relevant features not related to volume by category and regression model
Financial Marketing Healthcare

RF kNN GBR RF kNN GBR RF kNN GBR
S3Bucket Email S3Bucket IdSessions History csv wordhealth csv wordlist

wordsubmit Download wordmonthli Download USA yearly wordtrend daily Del. Methods
Download daily wordstock REST API IdSessions REST API wordmedic wordmarket wordhospit

txt IdCompanies worddeliv wordcustom Nº Countries wordqualiti wordglobal wordgo wordidentifi
wordedgar USA Del. Methods USA Financial wordaccur csv Limitations wordamerica

wordcustom wordmarket txt yearly Others wordidentifi Del. Methods location data wordhealth
wordlist Retail wordneed monthly wordcontact wordwebsit wordinsight wordpopul wordreport

wordcontact wordcontact wordsubmit IdCompanies Email UI Export wordreport wordprofil wordstudi
wordsystem real time wordreport wordname UI Export wordcover wordregion wordinsight wordupdat
wordcompar wordprice wordcontact location data Download wordfield wordlist Download wordcontact

B. Analyzing feature importance

Regression models can be used for feature importance
analysis. Next we use a range of such techniques to understand
which features have the higher impact on data product prices.

1) Optimizing Regression models: Owing to their stochastic
nature, training several regression algorithms and comparing
their outcomes is key to obtaining robust conclusions. Con-
sequently, we have tested variations of 9 different regressors
with different values for their main parameters (e.g., num. of
estimators, depth, etc.) as included in the Scikit-learn [52]
Python library, and inputs of different vocabulary lengths.
Such models work with the log instead of the absolute value of
product prices as the dependent variable so as to normalize the
distribution of prices and avoid negative price predictions. We
were hoping to find at least 3 models that produce sufficiently
accurate price predictions, measured as the R2score of their
output w.r.t. actual prices.

To reduce the complexity of each model, we removed low-
value features, i.e., those that had a negative leave-one-out
(LOO) value, provided the accuracy of the model was not
negatively affected. A feature having negative LOO value
means that the model improved its average accuracy in 10

random executions for different train and test data splits when
such feature was removed from the input matrix. Finally, we
performed a cross-validation to check the variance of the
accuracy of the model when training and testing in 5-folds,
and 20-random training-test splits of the input data.

We found that three target models worked reasonably well
(i.e., they yield an R2 score greater or equal to 0.70), namely
Random Forest [10], k-Nearest Neighbours [38], and Gradi-
ent Boosting [23], [46] regression models. On the contrary,
we discarded linear, Elastic-Net [68], Ridge [32], Bayesian
Ridge [45], and Lasso [64] regressions even though they
worked well in specific simulations.

In addition, we also tested a Deep Neural Network re-
gressor using the TensorFlow [1] and Keras [34] libraries.
We followed all common good practices recommended for
such activity by first standardizing the input data. We tested
RELU/Leaky RELU activation functions for all hidden layers,
and a linear activation function for the output layer. As loss
function we used the mean absolute error (MAE). To avoid
overfitting we randomly applied Drop-out between training
epochs and to avoid dying/exploding neurons we also applied
Batch normalization between all layers. We used the Adam
optimizer [35] with a tuned learning rate decay to train the

model faster at the beginning and then decrease the learning
rate with further epochs to make training more precise. Finally,
we used Callbacks to stop the training at the optimal epoch.

Table IV presents a summary of the accuracy obtained by
regressor and category of data products, including the R2

score, the MAE and the mean squared error (MSE) with
regards to the actual log prices. For the sake of robustness,
our results were consistent across subsequent 5-fold and 20
random train/test splits: R2 score showed a standard deviation
below 4% of the average in each round. Note that due to the
total (low) number of observations that we have in our datasets,
DNN models are not recommended, nevertheless, we wanted
to explore them since we believe that they will further improve
our results as soon as we manage to increase the overall size of
our datasets. Consequently, we avoided using any DNN model
in the feature importance analysis.

2) Analyzing the importance of individual features: We
carried out this process for financial, marketing, healthcare
and all data products in our sample. Financial and marketing
data were the most popular data categories, whereas healthcare
data was chosen as a relevant disjoint category of less though
increasingly popular products showing a different behavior in
terms of prices. As a result, we obtained at least one model
that achieves a R2 score of 0.78 by category and accurately fits
the prices of data products (see Tab. IV). We ran two different
individual feature importance analysis:

1) measuring the accuracy lost by randomly shuffling the
values of a certain feature among samples (permutation
importance analysis [63]), and

2) measuring the prediction accuracy lost when one indi-
vidual feature is removed from the inputs (leave-one-out
or LOO value).

We have found that 50% of the positive LOO and 67% of the
∆R2 score by shuffling values owe to the top 10 most relevant
features on average for specific categories of data. Note that
we would need more than 25 features to achieve equivalent
scores if we include all the products. Whereas features related
to units and the volume of data clearly lead the ranking for
financial and marketing data products, they are less important
for healthcare-related ones.

We cross-validated our results in 5-fold executions of both
methods and took averages in order to disregard features that
showed to be important only in specific tests. As regards
robustness, we compared the top-20 ranking of every indi-
vidual test to the top-20 average ranking of that algorithm and
category. It turns out that both rankings have at least 5 features
in common in 95% of the cases, and a median of 13 common
individual features.

Table V lists other features not related to data volume in
descending order of importance. Next we provide some details
about the most important features of each specific category:

Financial: Not only do volume-related features such as
‘units’ and ‘entities’ rank number one, but they are on average
four times more important than the second feature in the
ranking. Other features relate to specific characteristics of
financial data products and help models identify data products

either by their category (e.g., ‘Retail’) or their description.
For instance, RF relies on the word ‘edgar’, which stands for
SEC’s Electronic Data Gathering, Analysis, and Retrieval Sys-
tem, all algorithms identify business ‘contact’ lists, a family
of financial products, and they also use ‘stock’ and ‘market’.
The word ‘custom’ helps identify information about customers,
but also refers to the valuable possibility of personalizing data
products (e.g., select which companies we want financial data
from). Features related to delivery methods (e.g., ‘S3bucket’
or ‘Download’) and update rate (e.g., ‘real time’ or ‘daily’)
stand out in terms of relevance, as well.

Marketing: With regards to marketing data products, fea-
tures related to volume, such as ‘units’ and ‘entities’ lead the
ranking, as well. Again categories (e.g., ‘Financial’, ‘Others’)
and specific words pointing to relevant characteristics of data
play a relevant role, too. For example, words like ‘contact’ are
used to locate contact lists, a family of marketing products,
the stems ‘qualiti’ and ‘accur’ refer to the high-quality and
accuracy of data, as advertised by sellers. A number of
features, such as the stem ‘identifi’, emphasize the value of
identification for marketing data. In addition, the presence of
‘IdSessions’ and ‘IdCompanies’ features indicates that being
able to reconstruct sessions of anonymized individuals and
being able to identify merchants are price drivers for marketing
products. Unlike financial data, the fact that a dataset includes
‘location data’ is also used to set prices of marketing data.
Finally, the scope of data is important, as suggested by features
like ‘USA’ and ‘Nº Countries’ ranking high in the results of
RF and kNN models.

Healthcare: The ‘what’ is more important than the ‘how
much’ when fitting the observed prices of healthcare products.
This is due to the heterogeneity of data products belonging
in this category, ranging from contact lists of healthcare
practitioners and hospitals to data about clinical trials or
specific medications. Therefore, stems like ‘trial’, ‘hospit’
or ‘studies’ help in identifying what a dataset is about. The
stem ‘go’ refers to an official check-in and rating system that
was used to limit the spread of COVID in the US. Features
related to the update rate, data format (‘csv’), the number of
available delivery options (‘Del. Methods’) and the presence
of ‘Limitations’ (e.g., limited number of reports, or limited
data exports included) determine product prices, too.

3) Analyzing the importance of groups of features: Since
LOO is often negligible for individual features, we have
repeated this analysis for groups of features answering to the
same question regarding the data product (see Tab. III). In this
case, we have used the following two methods:

1) Measuring the prediction accuracy lost when a group of
features is removed from the input dataset (LOO).

2) Measuring the average (in 20 random train/test split
executions) Shapley value of each group of features.

The Shapley value is defined as the average R2 score added
by combining the information of a certain group of features
with every possible mix of the rest of groups. This is a well-
known and widely-used concept in game theory, economics
and ML [24], [59], and it is considered a ‘fair’ method to

TABLE VI: LOO values by feature group

Group Financial Marketing Healthcare All
RF kNN GBR RF kNN GBR RF kNN GBR RF kNN GBR

Description 0.027 0.025 0.066 0.021 0.034 0.098 0.054 0.425 0.052 0.023 -0.020 0.079
Volume 0.092 0.182 0.167 0.171 0.138 0.199 0.048 0.014 0.052 0.138 0.123 0.142
Geo Scope -0.005 -0.007 -0.001 -0.003 -0.006 0.000 0.015 0.000 -0.011 -0.003 -0.002 0.000
Del. Method 0.005 0.032 0.011 0.000 0.018 0.008 0.019 0.017 0.003 0.002 0.010 0.008
Format 0.002 0.004 0.010 0.007 0.001 0.023 0.007 0.030 0.000 0.002 0.007 0.006
Category -0.002 0.001 0.001 -0.001 -0.003 0.001 0.013 -0.033 -0.006 0.001 0.000 0.003
Add-ons -0.001 0.007 -0.001 -0.001 0.000 0.001 0.000 0.022 0.000 0.001 0.001 0.000
Identifiability -0.002 0.016 0.002 -0.001 0.006 0.004 0.010 0.000 -0.009 0.000 0.008 0.000
History -0.001 0.000 0.000 -0.003 0.004 0.000 0.009 0.000 0.000 0.002 0.000 -0.001
Update Rate 0.001 0.023 0.001 0.036 0.000 0.016 0.010 0.021 0.000 0.021 -0.002 0.014

TABLE VII: Shapley values by feature group

Group Financial Marketing Healthcare All
RF kNN GBR RF kNN GBR RF kNN GBR RF kNN GBR

Description 0.155 0.266 0.222 0.247 0.153 0.152 0.232 0.290 0.236 0.113 0.176 0.187
Volume 0.211 0.216 0.184 0.290 0.241 0.241 0.168 0.125 0.131 0.211 0.210 0.174
Format 0.087 0.006 0.086 0.027 0.046 0.094 0.090 0.077 0.082 0.072 0.087 0.071
History 0.072 0.000 0.059 0.009 0.037 0.036 0.063 0.001 0.046 0.058 0.010 0.037
Update Rate 0.088 0.056 0.084 0.060 0.032 0.050 0.046 0.145 0.041 0.067 0.034 0.067
Del. Method 0.036 0.054 0.044 0.093 0.075 0.049 0.030 0.040 0.035 0.062 0.062 0.074
Identifiability 0.034 0.038 0.028 0.052 0.027 0.048 0.040 0.001 0.031 0.056 0.022 0.039
Geo Scope 0.056 0.046 0.050 0.032 0.044 0.036 0.030 0.001 0.040 0.061 0.015 0.024
Category 0.071 0.021 0.044 0.018 0.043 0.037 0.017 0.031 0.039 0.070 0.063 0.055
Add-ons 0.021 0.003 0.021 0.012 0.028 0.038 0.048 0.053 0.041 0.055 0.026 0.045

distribute the gains obtained by cooperation. In our case, we
applied the Shapley value to distribute the gains in accuracy
of our regression models among the groups of features that
contributed to achieving such an accuracy. Furthermore, we
ran 5-fold feature importance analysis in the case of LOO,
in a similar way as we did for individual features, and 20
calculations of the Shapley values for random 80/20 train/test
splits of our input data.

Whereas LOO measures gains or loses in accuracy of a
model when features belonging in a group are removed from
the input matrix, Shapley values better capture the comple-
mentarity among groups and take into consideration their
individual predictive power, as well. Table VI and Table VII
list the LOO and the Shapley values by group of features
in descending order of importance. The standard deviation
of Shapley values across executions is acceptable (average
below 0.029 for financial and marketing datasets, 0.057 for
healthcare-related data, and below 0.017 for all the data), and
the ranking of relevant feature groups remains stable.

Figure 5 plots the percentage of the sum of Shapley and
LOO values that each feature group represents, what we
call their predictive power, and illustrates how important
each group is for determining the prices of each category
of products. We have piled together and colored in gradients
groups responding to the same question about data products.

Note that the algorithms, in the absence of certain features,
try to replace or infer them through other features in order to
come up with the best estimation possible. We have observed
that this happens with ‘category’ labels or ‘add-ons’, and it
is also the reason why LOO values are generally smaller than
the corresponding Shapley values.

By looking at Fig. 5, we can confirm that features related
to ‘volume’ and ‘descriptions’ are the most relevant groups
driving data prices: at least half of the predictive power owes
to those two groups of features according to their Shapley

Fig. 5: Predicting power of feature groups

values. While ‘volume’ is clearly the most relevant group for
marketing data products, it is not so relevant for healthcare-
related data due to the heterogeneity of products belonging in
this category and due to their lower price-sensitivity to volume.

Data ‘update rate’ and its ‘format’ are consistently rele-
vant across all data categories, but to a lesser extent (6-11%
of the prediction score), whereas the Shapley values of the
other groups differ across categories: ‘history’ (meaning the
time span of data delivered) is more relevant for financial
and healthcare-related data, ‘delivery methods’ are more
relevant for marketing data, and ´identifiability’ is important
in general, but especially for marketing products. These results
are in line with our discussion based on the relevance of
individual features in the previous section.

In summary, it is mostly ‘what’, as captured in product
description and categories, and ‘how much’ data is being
traded that determine the price of a product. Since relevant
descriptive features are diverse and strongly differ across

data categories, we failed to find a single feature other than
‘units’ that, with some aforementioned exceptions, consistently
shows a significant predictive power. However, we did find
interesting features driving the prices of specific categories of
data, such as update rate for financial products, and the ability
to provide exact locations and those related to identifiability
for marketing data. ‘How’ data is delivered to buyers proved to
be important too, and accounts for 15-24% of predictive power
according to Shapley. Finally, historical time span (‘when’) and
geographical scope (‘where’) of data products, whose score
oscillates around 5% for every data category, are less relevant
in driving their prices.

VII. RELATED WORKS

Even though several surveys related to data marketplaces
have been recently published [4], [57], [60]–[62], our work is,
to the best of our knowledge, the first empirical measurement
study that deals with the prices of data products sold in
commercial data marketplaces.

In fact, the lack of empirical data around dataset prices is
considered as a key challenge in data pricing research [53].
According to some authors, some techniques to set the prices
of digital products [58] or cloud services [66] are applicable to
data products, as well. Some authors proposed auction designs
to set the prices of digital goods and data products [26],
[27]. Novel AI/ML data marketplace architectures have been
proposed under the concept of value-based pricing [3], [16],
[49] and the value of privacy [48]. Moreover, some authors
defined pricing strategies and marketplaces based on differen-
tial privacy [25], [40] or queries to a database [15], [37]. All
of them work on analyzing the theoretical properties for fair,
arbitrage-free pricing, but leave the responsibility of actually
defining absolute prices to both buyers and sellers. Quality-
based pricing [29] is the one closest to our approach. Accord-
ing to it, the value of data must be assessed by evaluating
and assigning weights to certain quality features. Even though
some additional works have provided data pricing strategies
for sellers based on this idea [67], we are not aware of any
measurement study that has been able to derive weights for
such features from real market data.

The pricing of personal data of individuals has received
attention from the privacy and measurement communities.
There are measurement studies based on prices carried over
the Real Time Bidding protocol [43], [51] as well as more tra-
ditional survey-based studies [12]. These works report prices
for the data and the attention of individuals and, therefore,
have nothing to do with B2B datasets traded in modern DMs.

Cross-marketplace analysis and discoverability of data has
been pointed out as a significant challenge by data marketplace
vision papers [54]. Google Dataset Search has proposed a
standard for providing metadata for their crawlers [11]. Dis-
coverability is the leit motiv of DMs and data aggregators,
such as DataRade, but do not touch upon pricing questions.

Finally, part of this work explaining the challenges in scrap-
ing and comparing across data marketplaces and outlining the
design of a data quotation tool was published as a workshop

paper [5]. This paper is adding substantially new material, such
as the procedures we used to populate a cross-DM database,
the development and test of classifiers to compare across DMs
(see Sect. V), and the training of regression models to fit data
prices and carry out feature importance analysis (see Sect. VI).

VIII. CONCLUSIONS AND FUTURE WORK

Our work has provided a first glimpse into the growing
market for B2B data. Despite having worked in a range of
pricing topics in the past, prior to conducting this study, we did
not have the slightest idea even for fundamental questions such
as “What are typical prices for data products sold online?”, or
“What types of data command higher prices?”. Our work has
produced answers to those and many other questions. We have
seen that while the median price for data is few thousands,
there exist data products that sell for hundreds of thousands
of dollars. We have also looked at the categories of data and
the specific per-category features that have the highest impact
on prices. Having scraped metadata for hundreds of thousands
of data products listed by 10 real-world data marketplaces and
other 30 data providers we found fewer than ten thousand that
were non-free and included prices. We believe that this is due
to prices being often left to direct negotiation between buyers
and sellers, and also because most marketplaces use free data
to bootstrap their marketplace and attract the first “buyers”
and then commercial sellers.

Moreover, the paper represents a first step towards develop-
ing a price recommendation tool for new data products [5],
and has even provided a first implementation of some of
its key components, namely i) the metadata and taxonomy
required to describe data products, ii) crawlers and parsers to
automate the collection of such information from key leading
marketplaces, iii) classifiers to compare across them, and iv)
regression models to understand which are the most relevant
features driving product prices. The significant monthly growth
rate we have seen at AWS and other marketplaces makes us
believe that in the future the paid catalog of data marketplaces
is bound to grow and therefore, we will continue monitoring
them to see how they evolve.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A.
Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M.
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal- war, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M.
Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale
Machine Learning on Heterogeneous Systems, 2015. Software available
from tensorflow.org.

[2] Advaneo. Access to the world of data. https://www.
advaneo-datamarketplace.de/. Last accessed: Oct’22

[3] A. Agarwal, M. Dahleh, and T. Sarkar. A Marketplace for Data: An
Algorithmic Solution. In Proc. of ACM EC, 2019.

[4] S. Andrés Azcoitia and N. Laoutaris. A Survey of Data Marketplaces
and their Business Models. SIGMOD Record, 2022.

[5] S. Andrés Azcoitia, C. Iordanou, N. Laoutaris, “Measuring the Price
of Data in Commercial Data Marketplaces,” ACM Data Economy
Workshop, 2022.

[6] I. Arrieta-Ibarra, L. Goff, D. Jiménez-Hernández, J. Lanier, and E. G.
Weyl. Should we Treat Data as Labor? Moving Beyond ”Free”. AEA
Papers and Proceedings, 108:38–42, 2018

[7] AWS. Amazon Web Services Marketplace. https://aws.amazon.com/
marketplace. Last accessed: Oct’22

[8] Battlefin. Better your investments using alternative data. https://www.
battlefin.com/. Last accessed: Oct’22.

[9] E. L. Bird, Steven and E. Klein. Natural Language Processing with
Python. O’Reilly Media Inc, 2009.

[10] Breiman. Random forests. Mach. Learn., 45(1):5–32, Oct. 2001.
[11] D. Brickley, M. Burgess, and N. Noy. Google Dataset Search: Building

a Search Engine for Datasets in an Open Web Ecosystem. In Proc. of
ACM WWW conf., 2019.

[12] J. P. Carrascal, C. Riederer, V. Erramilli, M. Cherubini, and R. de
Oliveira. Your Browsing Behavior for a Big Mac: Economics of Personal
Information Online. In Proc. of ACM WWW Conf., 2013

[13] Caruso. Your solution. one platform. multibrand in-vehicle data. https:
//www.caruso-dataplace.com/. Last accessed: Oct’22.

[14] G. Cattaneo, G. Micheletti, and al. The European Data Market Mon-
itoring Tool. Key Facts and Figures, First Policy Conclusions, Data
Landscape and Quantified Stories. Final Study Report. European Com-
mission, 2020.

[15] S. Chawla, S. Deep, P. Koutris, and Y. Teng. Revenue Maximization for
Query Pricing. Proc. of the VLDB Endow., 13, 2019.

[16] L. Chen, P. Koutris, and A. Kumar. Towards Model-Based Pricing
for Machine Learning in a Data Marketplace. In Proceeding of ACM
SIGMOD, 2019.

[17] Clive Humby. Data is the New Oil! Keynote at ANA Senior Marketer’s
Summit, Kellogg School, 2006.

[18] DataRade. Datarade. choose the right data with confidence. https:
//datarade.ai/. Last accessed: Oct’22.

[19] Dawex. DAWEX Data Exchange, unleash the value of your data. https:
//www.dawex.com/. Last accessed: Oct’22.

[20] L. Denoyer and P. Gallinari. Bayesian Network Model for Semi-
structured Document Classification. Inf. Process. Manage., 40(5), 2004.

[21] DIH. Data intelligence hub. extract value from data securely. https://dih.
telekom.net/. Last accessed: Oct’22.

[22] P. Domingos and M. Pazzani. On the optimality of the Simple Bayesian
Classifier under Zero-one Loss. Mach. Learn., 1997

[23] J. Friedman. Greedy Function Approximation: A Gradient Boosting
Machine. The Annals of Statistics, 29, 2000

[24] A. Ghorbani and J. Zou. Data shapley: Equitable Valuation of Data for
Machine Learning. Proc. of the ICML, 2019.

[25] A. Ghosh and A. Roth. Selling privacy at auction. In Proc. of the ACM
EC ’11, 2011.

[26] A. V. Goldberg and J. D. Hartline. Competitiveness via Consensus. In
Proc. of the 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’03, page 215–222, USA, 2003. Society for Industrial
and Applied Mathematics.

[27] A. V. Goldberg, J. D. Hartline, and A. Wright. Competitive Auctions
and Digital Goods. In Proc. of the ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics, 2001.

[28] Harvard. Dataverse. https://dataverse.harvard.edu/. Accessed: Oct’22.
[29] J. R. Heckman, E. Boehmer, E. H. Peters, M. Davaloo, and N. G. Kurup.

A Pricing Model for Data Markets. In Proc. iConference 2015.
[30] N. Henke, J. Bughin, and al. The age of analytics: Competing in a

Data-driven World. McKinsey Global Institute, 2016.
[31] M. Hils, D. W. Woods, and R. Böhme. Measuring the Emergence of

Consent Management on the Web. In Proc. of the ACM IMC’20, page
317–332. 2020.

[32] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased Estimation
for Nonorthogonal Problems. Technometrics, 42(1):80–86, Feb. 2000.

[33] Kaggle. Datasets. https://www.kaggle.com/datasets. Accessed: Oct’22.
[34] Keras. Simple. flexible. powerful. https://keras.io/. Accessed: Jun ’22.
[35] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

In Y. Bengio and Y. LeCun, editors, Proc of ICLR ’15, 2015.
[36] Y. Ko. A Study of Term Weighting Schemes using Class Information

for Text Classification. In Proc. of ACM SIGIR 2012.
[37] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu.

Querymarket Demonstration: Pricing for Online Data Markets. Proc.
of the VLDB Endow., 5, 2012.

[38] O. Kramer. Unsupervised k-Nearest Neighbor regression. 2011.
[39] G. Krishnaveni and T. Sudha. Naı̈ve Bayes Text Classification - a

Comparison of Event Models. Imperial Journal of Interdisciplinary
Research, 3, 2016.

[40] C. Li, D. Y. Li, G. Miklau, and D. Suciu. A theory of pricing private
data. ACM Transactions on Database Systems 39(4), 2015.

[41] LiveRamp. Data marketplace. https://liveramp.com/our-platform/
data-marketplace/. Last accessed: Oct’22.

[42] LOTAME. Private data exchange (pdx). trusted data relationships made
easy. https://www.lotame.com/pdx/. Last accessed: Oct’22.

[43] C. C. Lukasz Olejnik, Minh-Dung Tran. Selling off privacy at auction.
In Proc. of the NDSS Symposium, 2014.

[44] A. Löser, F. Stahl, A. Muschalle, and G. Vossen. Pricing Approaches
for Data Markets. In Proc. of the International Workshop on Business
Intelligence for the Real-Time Enterprise, 2012.

[45] D. J. C. MacKay. Bayesian interpolation. Neural Comput., 4(3), 1992.
[46] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting Algorithms as

Gradient Descent. In Proc. of the International Conference on Neural
Information Processing Systems, 1999.

[47] S. Matic, C. Iordanou, G. Smaragdakis, and N. Laoutaris. Identifying
Sensitive Urls at Web-scale. In Proceedings of the ACM IMC, 2020.

[48] C. Niu, Z. Zheng, F. Wu, S. Tang, X. Gao, and G. Chen. Unlocking the
Value of Privacy: Trading Aggregate Statistics over Private Correlated
Data. In Proc. of ACM SIGKDD, 2018.

[49] O. Ohrimenko, S. Tople, and S. Tschiatschek. Collaborative Machine
Learning Markets with Data-replication-robust Payments. CoRR, 2019.

[50] Otonomo. One-stop shop for vehicle data. https://otonomo.io/. Last
accessed: Oct’22.

[51] P. Papadopoulos, N. Kourtellis, P. R. Rodriguez, and N. Laoutaris. If
you are not paying for it, you are the product: How much do advertisers
pay to reach you? In Proc. of the ACM IMC, 2017.

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine
Learning Research.

[53] J. Pei. Data Pricing – from Economics to Data Science. In Proc. of the
ACM SIGKDD, page 3553–3554, 2020.

[54] M. F. Raul Castro Fernandez, Pranav Subramaniam. Data Market
Platforms: Trading Data Assets to Solve Data Problems. In Proc. of
the VLDB Endow., 2020.

[55] Refinitiv. Data catalog. our data, your way. https://www.refinitiv.com/en/
financial-data. Last accessed: Oct’22.

[56] G. Salton and C. Buckley. Term-weighting approaches in automatic text
retrieval. Info. Processing and Management, 1988.

[57] F. Schomm, F. Stahl, and G. Vossen. Marketplaces for data: An initial
survey. ACM SIGMOD Record, 2013.

[58] C. Shapiro and H. R. Varian. Information Rules: A Strategic Guide to
the Network Economy. Harvard Business School Press, 2000.

[59] L. S. Shapley. A Value for n-Person Games. RAND Corporation, 1952.
[60] M. Spiekermann. Data marketplaces: Trends and monetisation of data

goods. Intereconomics, 2019.
[61] F. Stahl, F. Schomm, L. Vomfell, and G. Vossen. Marketplaces for digital

data: Quo vadis? Computer and Information Science, 10, 2017.
[62] F. Stahl, F. Schomm, and G. Vossen. The Data Marketplace Survey

Revisited. Westf. Wilhelms-Univ., ERCIS, 2014.
[63] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Con-

ditional Variable Importance for Random Forests. BMC Bioinformatics,
2008.

[64] R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal
of the Royal Statistical Society (Series B), 1996.

[65] Veracity. Veracity by DNV GL. Find the Right Tools for your Industry
Needs. https://store.veracity.com/. Last accessed: Oct’22.

[66] C. Wu, R. Buyya, and K. Ramamohanarao. Cloud Pricing Models:
Taxonomy, Survey, and Interdisciplinary Challenges. ACM Computing
Surveys, 2019.

[67] H. Yu and M. Zhang. Data Pricing Strategy based on Data Quality.
Computers and Industrial Engineering, 112:1–10, 2017.

[68] H. Zou and T. Hastie. Regularization and Variable Selection via the
Elastic Net. Journal of the Royal Statistical Society. Series B. (Statistical
Methodology), 2005.

65/72

Anexo 5: Try Before You Buy

MLEDGE Report: Try-Before-You-Buy reloaded and federated

Alexandr Goultiaev Tolstokorov

alexandr.goultiaev@imdea.org

IMDEA Networks Institute

Leganés, Madrid, Spain

Santiago Andrés Azcoitia

santiago.azcoitia@imdea.org

IMDEA Networks Institute

Leganés, Madrid, Spain

Nikolaos Laoutaris

nikolaous.laoutaris@imdea.org

IMDEA Networks Institute

Leganés, Madrid, Spain

1 Motivation

As data is increasingly used to drive decision-making processes, companies need obtaining suitable data and
insights from third parties to improve the accuracy and efficiency of their models. A number of commercial
data marketplaces (DMs) have appeared in the market to mediate between providers and consumers and to
manage data sharing and transactions between them [1].

The operation of a data marketplace entails complex technical and economic challenges due to the elusive
nature of data as an economic good. In particular, the value of data is strongly dependent on the use case,
and two similar datasets could be very valuable for a ML task A and not so valuable for a ML task B, and
data from different providers may yield very different values in training a single ML model, irrespective of
the amount of information they carry [2]. In summary, buyers are not able to realise the value of a piece of
data for them until they are able to test the data on their own model.

A number of solutions have been proposed to circumvent this problem, known as Arrow’s information
paradox. On the one hand, commercial data marketplaces are addressing this by sharing outdated data
samples, by providing metadata to potential buyers, and most interestingly by allowing potential data buyers
try versions or samples of a dataset in “sandboxed” environments that do not allow buyers to download data.
On the other hand, most DM proposals from the research community have responded to this challenge by
allowing buyers to share their ML models with DMs and letting the platform provide data according to
the price paid by users [3, 4], or find the combination of datasets [5, 6] that best suits the ML task. These
solutions, which have not been implemented yet, share a common drawback: buyers are supposed to trust the
platform and share a most likely sensitive and confidential ML model. Such ML models are often complex,
which makes training them with different combinations of eligible datasets to select the most suitable ones
computationally expensive. Finally, none of these solutions evaluate the cost of processing a data transaction,
which can be prohibitive and hence can threaten the viability of the DM.

Our objective is to provide more scalable and explainable alternatives to these proposals that avoid buyers
sharing confidential intellectual property with DMs, and make the data purchasing process more scalable.
This solution will also be useful in federated environments in the cloud edge, where data will be distributed
in different edge nodes, and federated clients in those nodes will be in charge of evaluating data assets and
returning the results to a centralized control node that will be accessed by data buyers.

Our planned contributions: This paper will introduce a practical architecture of a data marketplace that
evaluates and charges for data and for processing transactions. Moreover, it introduces the idea of valuation
functions (VFs) and puppet valuation models (PVMs) to reduce the processing costs, and shows that data
buyers are able to find suitable data tailored to their use case without necessarily sharing information about
their (often) complex ML tasks. Then we plan to test different PVMs and VFs for different use cases related
to image classification problems and a forecasting taxi-ride demand in different districts of Chicago [7] use
case, and we plan to investigate the efficiency vs. accuracy trade-off and evaluate the cost of processing and
selling such data.

1

2 Problem Setting

Let us assume that the buyer is seeking to buy data in order to optimise a certain AI/ML model (M),
i.e., to maximise the value of a metric a(·) which we will call accuracy and can accommodate any model
performance metrics such as F1 score, precision, mean absolute error, etc. We will assume the buyer has
also a limited budget B to pay for the cost of such transaction.

Let us denote by S the set of sellers able to provide suitable data for the task (M, a) at a given DM. We
will denote by C the catalogue (set of possible data inputs) for (M, a) based on data from those sellers. We
will assume the pricing function p : C −→ R+ is known by the DM and subadditive. Based on the way real
data marketplaces work, we will assume that the price the buyer pays for data is set according to different
criteria, namely i) the volume of samples purchased, ii) a realistic distribution obtained from existing prices
in commercial DM catalogues, iii) a random uniform price distribution that has nothing to do with the value
of data [1], or iv) according to the accuracy it brings to the task (M, a).

Apart from presenting the buyers different eligible datasets d ⊆ C and their prices p(d), we will assume
that the data marketplace can evaluate the performance of an AI/ML model trained with data it has access
to, and buyers can therefore ask the DM for a(d) to make the decision of which dataset(s) to buy. We will
assume that the DM will charge the buyer for the corresponding processing cost a quantity that will depend
on the task and the data to evaluate, denoted as γ(M, a, d). We will assume that this cost is proportional to
the processing time invested in the transaction, and we will take real costs of IaaS in public cloud platforms
to evaluate the processing charges issued by the DM.

For now, we will assume that the DM is also willing to perform some free valuation for the buyer, by
providing him with the revealed accuracies for a small subset of C which we denote the known set K ⊂ C.
The rest of the datasets for which accuracy is unknown belong to the unknown set U ⊆ C, therefore the
datasets on sale in the catalogue are C = K∪U . This assumption is relaxed later as the purchasing strategies
developed can work in the setting where nothing is provided for free |K| = 0.

Therefore, we will assume that the cost of a data transaction for the buyers, denoted as c(d), includes a
fixed cost component (compensating, for example, for the registration of a transaction in a blockchain ledger,
or for the resulting costs or transferring the data) denoted as cf , the cost of acquiring the data (p(d)), and
a variable cost component proportional to the amount of processing required to select d and calculate the
corresponding payoffs for sellers, which we will denote as cp and that will in turn depend on the datasets
d′ ∈ K the buyer has asked the DM to evaluate to make this decision.

c(d) = p(d) + cf + cp = p(d) + cf +
∑
d′∈K

γ(M, a, d′) (1)

2.1 Purchasing Strategies

In this setting, the problem of selecting suitable data products using the capabilities of data marketplaces
is not straightforward and requires careful purchasing strategies to optimise argmaxd∈Ca(d) subject to
c(d) < B. Optimally, buyers would like to get the d⋆,∀d ⊆ C, a(d⋆) ≥ a(d). But for finding d⋆ a buyer needs
to ask the DM to evaluate any possible combination of data products, which usually leads to prohibitive
processing costs. Since it is not feasible to reveal the value of any possible combinations of elements in C,
buyers need purchasing strategies to select promising data to be evaluated by the DM and, eventually, be
bought to increase the accuracy of their model.

Impossibility of maximising absolute quality with a deterministic algorithm: Given that qualities
of the datasets in U are unknown, it follows that no deterministic algorithm is guaranteed to be able to buy
the affordable dataset of highest (absolute) quality.

Lemma 1 Given prices and qualities for datasets in K, prices for datasets in U , and a budget B for buying
datasets and revealing unknown qualities at cost R per individual dataset, it is impossible to guarantee that
the dataset with highest quality and price up to B will be identified in K ∪ U .

2

This can be easily established via the following counter-example. Assume that o is the optimal dataset
that has p(o) ≤ B and a(o) ≥ v for any v ∈ C and that o ∈ U . Assume also that |U| > B/R. This means
that independently of the actual price p(o), the buyer may not be able to identify o even if he uses all his
budget to reveal the price of ⌊B/R⌋ datasets in U .

2.1.1 Greedy Algorithm

Granted the impossibility of maximising absolute quality, let us define the alternative notion of guaranteed
quality for the buyer as the maximum quality dataset that he can afford at a certain point in time with the
available information and budget at that time. Knowing the prices and qualities in K, the prices in U , and
having a budget B, if we take the set K to be sorted in order of decreasing accuracy and the set U to be
sorted in order of increasing price. Then the initial guaranteed quality of the buyer is the first and therefore
highest accuracy dataset in the known set a(k(1)) where k ∈ K. If, he starts exploring U then his guaranteed
quality can become at least :

g∗ = max

(
a(k(1)),max

u∈U
(a(u))

)
(2)

Algorithm 1 Greedy Algorithm for Maximum Guaranteed Quality

Require: K (known datasets), U (unknown datasets), B (budget), R (cost to reveal)
1: Initialize:
2: remaining budget← B −B − p(k(1))
3: best dataset← k(1)
4: i← 0
5: Sort K in order of descending accuracy, and U in order of increasing price
6: while remaining budget > R do
7: Pay R to learn the quality of U(i)
8: if a(U(i)) > best dataset and p(U(i)) ≤ B −R ∗ i then
9: Set best dataset = a(U(i)) and leftover = B − p(U(i))−R ∗ i

10: end if
11: i← i+ 1
12: end while
13: return best dataset

2.1.2 Bandit Algorithm

Depending on the distributions of qualities and prices in the unveiled set K and the unknown set U , heavier
bias towards exploration might lead to better quality found and perhaps even the global maximum dataset
being found. For this case, we can postulate that a buyer is willing to risk a certain drop in guaranteed
quality g∗ for an increase in the expected accuracy e∗ in the hope of finding a dataset u(k) whose quality
is higher than the guaranteed maximum a(u(k)) > g∗. This can occur if the dataset u(k) is outside the

exploration depth achieved by the greedy algorithm, k > B−p(g∗)
R . We denote this risk factor s, which

dictates how much sacrifice in quality the buyer is willing to incur. It is provable that reserving the price
of a cheaper yet slightly lower accuracy dataset in K as the exploration starting point can lead to deeper
exploration and perhaps better results. This alternate starting point in K we denote as k(j) ∈ K.

e∗ = max

(
a(k(j)),max

u∈U
(a(u))

)
(3)

To choose our starting point, we compute the probability of choosing a dataset k(j) in K and reserving
its price p(k(j)), denoted as εj , as the ratio of sacrifice in quality ∆a(j) = a(k(1)) − a(k(j)) to increase in

leftover budget ∆l(j) = l(k(j))− l(k(1)), εj =
∆l(j)
∆a(j) . The weights are normalized so that

∑|K|
j=1 εj = 1.

3

Algorithm 2 Bandit Algorithm for Maximum Expected Quality

Require: K (known datasets), U (unknown datasets), B (budget), R (cost to reveal), s (risk)
1: Initialize:
2: datasets explored← boolean array for datasets in U
3: linear regression performance← array for performance tracking
4: remaining budget← B
5: best dataset← k(j) ∈ K
6: tp ← 0
7: while remaining budget > R do
8: Calculate average error as average of linear regression performance
9: Update tp using get adjusted tp(average error, s, tp)

10: Calculate ρ between known datasets in K and unveiled datasets in U
11: if tp suggests using linear regression (ρ > tp) then
12: Apply linear regression on known datasets
13: Predict accuracies in U
14: Select a dataset in U based on predictions and affordability
15: Update linear regression performance
16: else
17: Select and reveal a dataset from U with heavy bias on cheaper datasets
18: end if
19: Update datasets explored and remaining budget
20: if revealed dataset has higher accuracy and is affordable then
21: Update best dataset
22: end if
23: end while
24: return accuracy of best dataset

3 Scenarios

For the Benchmark testing we have used the task of image classification on the MNIST dataset. To simulate
different realistic DM scenarios where our purchasing strategies could be tested and compared we have
introduced non-iid distributions of labels, dataset sizes, image quality, Moreover, as part of prior research
and surveys in commercial data market [1], we have identified four pricing schemes commonly present in
DMs, namely volume-based pricing, accuracy-correlated pricing, random pricing, and pricing according to a
market-based distribution. Next we provide additional details on how we carried out non-iid distributions,
and on the different price schemes considered in the tests.

3.1 Non-iid: Label and Size Distribution

Using a Dirichlet distribution, we are able to split the MNIST dataset into partitions simulating the datasets
on sale on a DM using a α parameter to decide the non-iid degree as shown in Figure 1.

3.2 Non-iid: Quality Distribution

To simulate the differing quality of images offered by the sellers in a DM we introduce different types of
noise to the images, namely: Gaussian noise, speckle noise and salt and pepper noise as show in Figure 2

3.3 Pricing Schemes

Volume-based pricing: This is the case in which the price per image is the same for all sellers.

4

(a) Label Distribution of 10 sellers (b) Size distribution of 100 partitions

Figure 1: Representation of the resulting simulated DM catalogue with MNIST Non-iid split.

(a) Gaussian Noise representation (b) Speckle Noise representation (c) S&P Noise representation

Figure 2: Representation of the resulting images after applying different noises.

Random pricing: In this case the price per dataset is set independently and following a uniform random
distribution.

Pricing correlated with accuracy: Some literature works propose that DMs charge prices relevant to
the utility brought to the buyer. We will assume that in our case the utility of a dataset is equivalent
to the accuracy of that dataset on the buyers model.

Market-based pricing: From surveying existing commercial DMs we have obtained a distribution for
image dataset prices following two distinct log-normal distributions. The two classes represent ”general
purpose” datasets which are generally larger and less task dependent and ”custom” datasets which are
generally smaller and more tailored to a specific task. We simulate this case by adding noise to
the larger partitions in our split and assigning those partitions the price distribution of the ”general
purpose” datasets, whereas the smaller cleaner datasets are assigned the price distribution of ”custom”
datasets.

4 Preliminary Results

To compare our algorithms, we have implemented five other algorithms present in the existing exploration
vs exploitation research literature [8, 9, 10].

Epsilon Greedy Bandit: In the Epsilon-Greedy strategy, with probability epsilon, you explore by reveal-
ing the accuracy of a dataset in U , and with probability 1 - epsilon, you exploit by choosing the best
dataset found so far that is affordable with the remaining budget. The value of epsilon determines the
balance between exploration and exploitation – a higher epsilon meaning more exploration.

Upper Confidence Bound (UCB) Bandit: UCB involves selecting the dataset that has the highest up-
per confidence bound, balancing between the mean accuracy and the uncertainty associated with it.

5

Thompson Sampling Bandit: Thompson sampling in our context would involve maintaining a probabil-
ity distribution for the accuracy of each dataset in U . As you reveal more datasets, you update these
distributions.

Softmax (Boltzmann) Exploration: Softmax - aka Boltzmann - Exploration is a strategy where the
probability of selecting an option is based on the relative estimated values of the options, using a
softmax function. This approach is softer than the hard max decision rule used in UCB and can be
more explorative.

Gradient bandit Algorithm: Gradient Bandit Algorithms use a numerical preference for each option.
The preferences are updated based on received rewards, and the probability of selecting each option is
determined using a softmax function over these preferences.

(a) Random Pricing (b) Pricing correlated with accuracy

(c) Volume-based Pricing (d) Market-based Pricing

Figure 3: Performance Comparison of our algorithms on MNIST.

6

5 Conclusion and Next Steps

As shown in Figure 3, our Bandit algorithm seems to outperform the greedy and the other algorithms from
exploration vs exploitation literature in all four of our case scenarios. It proves to be more robust as it deals
with even unfavourable pricing schemes such as random pricing while still maintaining its strength in the
correlated and volume-based pricing scenarios.

Next Steps: We are progressing with this task in the following directions:
1. Scanning for optimal parameters both for the bandit and the existing literature solutions to properly

show that our algorithm outperforms them,
2. Introducing VFs and PVMs and testing them to find out about the accuracy vs cost trade-off that is

of interest to us in the scope of this work, and finally
3. Moving on to a second scenario to validate our purchasing strategies performance in that case and

explore the effect and trade-off introduced by the use of VFs and PVMs. In this case, we will evaluate and
select data of individual taxis for the task of forecasting taxi-ride demand per district in Chicago.

References

[1] S. Andrés Azcoitia and N. Laoutaris. A survey of data marketplaces and their business models. 2022.

[2] Santiago Andrés Azcoitia, Marius Paraschiv, and Nikolaos Laoutaris. Computing the relative value of
spatio-temporal data in wholesale and retail data marketplaces, 2020.

[3] Anish Agarwal, Munther Dahleh, and Tuhin Sarkar. A marketplace for data: An algorithmic solution.
In Proceedings of the 2019 ACM Conference on Economics and Computation, pages 701–726, 06 2019.

[4] Lingjiao Chen, Paraschos Koutris, and Arun Kumar. Towards model-based pricing for machine learning
in a data marketplace. In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD ’19, page 1535–1552, New York, NY, USA, 2019. Association for Computing Machinery.

[5] Santiago Andrés Azcoitia and Nikolaos Laoutaris. Try before you buy: A practical data purchasing
algorithm for real-world data marketplaces, 2020.

[6] Xinlei Xu, Awni Hannun, and Laurens Van Der Maaten. Data appraisal without data sharing. In Gustau
Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 11422–11437. PMLR, 28–30 Mar 2022.

[7] City of Chicago. Taxi trips: City of chicago: Data portal, Dec 2023.

[8] WILLIAM R THOMPSON. ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EX-
CEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES. Biometrika, 25(3-4):285–
294, 12 1933.

[9] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

[10] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

7

